

Standardized

Technical Architecture

Modeling
Conceptual and Design Level

Version 1.0

March 2007

Copyright 2007 SAP AG. All Rights Reserved

No part of this document may be reproduced or transmitted in any form or for any purpose without the

express permission of SAP AG. The information contained herein may be changed without prior notice.

Some software products marketed by SAP AG and its distributors contain proprietary software components

of other software vendors.

Microsoft, Windows, Excel, Outlook, and PowerPoint are registered trademarks of Microsoft Corporation.

IBM, DB2, DB2 Universal Database, OS/2, Parallel Sysplex, MVS/ESA, AIX, S/390, AS/400, OS/390,

OS/400, iSeries, pSeries, xSeries, zSeries, System i, System i5, System p, System p5, System x, System z,

System z9, z/OS, AFP, Intelligent Miner, WebSphere, Netfinity, Tivoli, Informix, i5/OS, POWER, POWER5,

POWER5+, OpenPower and PowerPC are trademarks or registered trademarks of IBM Corporation.

Adobe, the Adobe logo, Acrobat, PostScript, and Reader are either trademarks or registered trademarks of

Adobe Systems Incorporated in the United States and/or other countries.

Oracle is a registered trademark of Oracle Corporation.

UNIX, X/Open, OSF/1, and Motif are registered trademarks of the Open Group.

Citrix, ICA, Program Neighborhood, MetaFrame, WinFrame, VideoFrame, and MultiWin are trademarks or

registered trademarks of Citrix Systems, Inc.

HTML, XML, XHTML and W3C are trademarks or registered trademarks of W3C®, World Wide Web

Consortium, Massachusetts Institute of Technology.

Java is a registered trademark of Sun Microsystems, Inc.

JavaScript is a registered trademark of Sun Microsystems, Inc., used under license for technology invented

and implemented by Netscape.

MaxDB is a trademark of MySQL AB, Sweden.

SAP, R/3, mySAP, mySAP.com, xApps, xApp, SAP NetWeaver, and other SAP products and services

mentioned herein as well as their respective logos are trademarks or registered trademarks of SAP AG in

Germany and in several other countries all over the world. All other product and service names mentioned

are the trademarks of their respective companies. Data contained in this document serves informational

purposes only. National product specifications may vary.

The information in this document is proprietary to SAP. No part of this document may be reproduced, copied,

or transmitted in any form or for any purpose without the express prior written permission of SAP AG.

This document is a preliminary version and not subject to your license agreement or any other agreement

with SAP. This document contains only intended strategies, developments, and functionalities of the SAP®

product and is not intended to be binding upon SAP to any particular course of business, product strategy,

and/or development. Please note that this document is subject to change and may be changed by SAP at

any time without notice.

SAP assumes no responsibility for errors or omissions in this document. SAP does not warrant the accuracy

or completeness of the information, text, graphics, links, or other items contained within this material. This

document is provided without a warranty of any kind, either express or implied, including but not limited to

the implied warranties of merchantability, fitness for a particular purpose, or non-infringement.

SAP shall have no liability for damages of any kind including without limitation direct, special, indirect, or

consequential damages that may result from the use of these materials. This limitation shall not apply in

cases of intent or gross negligence.

The statutory liability for personal injury and defective products is not affected. SAP has no control over the

information that you may access through the use of hot links contained in these materials and does not

endorse your use of third-party Web pages nor provide any warranty whatsoever relating to third-party Web

pages.

© Copyright SAP AG 2007 Page 1

Table of Contents

1 Goal and Scope.. 3
1.1 Scope of Standardized Technical Architecture Modeling..3
1.2 Currently Out of Scope ..3

2 Specification of Diagram Types.. 4
2.1 Diagram Types for Structural Descriptions...5
2.1.1 Component/Block Diagram .. 5
2.1.2 Class Diagram ... 9
2.1.3 Package Diagram .. 14
2.2 Diagram Types for Behavioral Descriptions ...15
2.2.1 Use Case Diagram... 15
2.2.2 Activity Diagram... 17
2.2.3 Sequence Diagram .. 21
2.2.4 State Machine Diagram ... 25
2.3 UML Profiles..27

3 Appendix A: Component/Block Diagram ... 28
3.1 Overview..28
3.2 Abstract Syntax ..29
3.3 Class Descriptions ...32
3.3.1 Access (from BasicBlockElements) ... 32
3.3.2 AccessEnd (from BasicBlockElements) ... 33
3.3.3 AccessPort (from BasicBlockElements)... 34
3.3.4 Agent (from BasicBlockElements).. 34
3.3.5 BlockElement (from BasicBlockElements) ... 35
3.3.6 Channel (from BasicBlockElements).. 36
3.3.7 ChannelEnd (from BasicBlockElements) ... 37
3.3.8 ChannelPort (from BasicBlockElements) ... 38
3.3.9 Generation (from AdditionalBlockConcepts) .. 38
3.3.10 ModifyAccess (from BasicBlockElements)... 39
3.3.11 MultiplicityDots (from AdditionalBlockConcepts) .. 39
3.3.12 Pointer (from AdditionalBlockConcepts) .. 40
3.3.13 ProtocolBoundary (from AdditionalBlockConcepts) ... 41
3.3.14 ReadAccess (from BasicBlockElements)... 42
3.3.15 Storage (from BasicBlockElements) .. 42
3.3.16 WriteAccess (from BasicBlockElements) ... 43

4 Links & Literature .. 45

© Copyright SAP AG 2007 Page 2

Table of Figures

Figure 2–1 Conceptual Level Component/Block diagram... 8

Figure 2–2 Design Level Component/Block diagram .. 8

Figure 2–3 Class diagram Conceptual Level .. 12

Figure 2–4 Class diagram Conceptual Level .. 12

Figure 2–5 Class diagram Design Level.. 13

Figure 2–6 Package Diagram.. 14

Figure 2–7 Use Case diagram .. 17

Figure 2–8 Activity Diagram Conceptual Level .. 20

Figure 2–9 Sequence diagram Conceptual Level... 23

Figure 2–10 Sequence diagram Design Level .. 24

Figure 2–11 State Machine Diagram .. 26

Figure 3–1 Dependencies between packages described in this chapter .. 29

Figure 3–2 The metaclasses that define the basic Block diagram elements .. 30

Figure 3–3 Additional Block diagram concepts used for didactical purposes....................................... 31

Figure 3–4 Additional Block diagram concepts describing special dependencies 31

Figure 3–5 Notation of agents accessing storages ... 33

Figure 3–6 Graphical simplification of assembly and delegation accesses ... 33

Figure 3–7 Example showing agents... 35

Figure 3–8 Grouped agents accessing a storage .. 35

Figure 3–9 Variations of channels ... 37

Figure 3–10 Usage of multiplicity dots.. 40

Figure 3–11 Use of a protocol boundary... 42

Figure 3–12 Nesting of storages .. 43

© Copyright SAP AG 2007 Page 3

1 Goal and Scope

1.1 Scope of Standardized Technical Architecture Modeling

SAP’s standardized technical architecture modeling defines and describes

• which diagram types are allowed to model technical architecture at SAP (see Chapter 2)

• what elements in a certain diagram type are allowed, optional or prohibited(see Chapter 2)

• which extensions of the UML meta model have been made for specific diagram types (see Chapter 2

and Appendix A)

• the semantics of newly added elements in diagram types and how those elements can be used (see

Chapter 2)

SAP’s standardized technical architecture modeling provides as few models as possible but as many as

necessary, whereas the primary requirement of simplicity will be fulfilled.

This standardized modeling does not currently focus on how business processes or business entities within

SAP solutions should be modeled. Therefore, the standard is not interfering with any business process-

oriented or business driven modeling methods. However, necessary alignment with existing methods is in

investigation and will be covered in one of the next versions.

1.2 Currently Out of Scope

This document will not discuss tools for modeling. Even though this document defines the diagram types and

elements, which can be used to model technical architecture, the document does not prescribe the

abstraction levels for those diagrams. The correct abstraction level for a given subject depends very much on

the subject itself and its surrounding context.

This document is not supposed to be used as (self-)training material for any modeling technique. In fact, it is

rather to be seen as a formal specification of standardized modeling on top of the existing specification of

UML. Therefore, this document is intended to be read by people with at least basic understanding of

modeling in UML. All example diagrams included in the document are to be seen as pure notational

examples without being embedded in a special context.

© Copyright SAP AG 2007 Page 4

2 Specification of Diagram Types

All diagram types, which are included in this version of the standardized technical architecture modeling, are

based on standard diagram types of the Unified Modeling Language Version 2.0. The following specification

documents published by the OMG are the basis for this version:

• Meta-Object Facility (MOF™) Core Specification v2.0 (January 2006)

• OCL Specification v2.0 (June 2005)

• Unified Modeling Language™ (UML®) Infrastructure v2.0 (March 2006)

• Unified Modeling Language™ (UML®) Superstructure v2.0 (August 2005)

Due to the fact that UML is widely accepted as standard notation, it is assumed that it is also more or less

well known by the majority of software developers and architects inside and outside SAP.

When modeling high-level architectural structures, Block diagrams (originated from the Fundamental

Modeling Concepts) have successfully served their purpose in the past. They effectively help avoiding free-

style pictures of conceptual architecture and improve communication due to their simplicity. Block diagrams

only consist of a few modeling elements, are easy to learn and intuitively understandable. In order to improve

integration of Block diagrams, UML Component diagrams have been formally extended as described in detail

(see Appendix A: Component/Block Diagram).

The unification of modeling methods is not only motivated by the improvement of modeling methods but also

by the reduction of diagram types.

The following diagram types are sufficient to fulfill the modeling needs for technical architecture. They are

specified in detail in the following sections.

Diagram Types for Structural Descriptions
1

SAP’s standardized technical architecture modeling covers the following diagram types for structural

descriptions.

• Component/Block Diagrams

• Class Diagrams

• Package Diagrams

Diagram Types for Behavioral Descriptions

SAP’s standardized technical architecture modeling covers the following diagram types for behavioral

descriptions.

• Use Case Diagrams

• Activity Diagrams

• Sequence Diagrams

• State Machine Diagrams

Most of the diagram types are allowed to be used on two different abstraction levels: on Conceptual Level

and Design Level
2
. Diagrams on conceptual level characteristically contain more abstract information, which

describe architectural concepts in a broader context. Diagrams on design level primarily focus on the

reflection of code structures. It is assumed that on design level the model exceeds the granularity on

conceptual level. Therefore, the number of allowed and optional elements on design level usually increases.

1
 UML diagram types can be differentiated between diagram types for describing structural aspects of a software solution and

diagram types describing the behavioral aspects of a software solution.

2
 It is necessary to explicitly clarify which particular abstraction level is used for a diagram. One approach would be to explain

the abstraction level in the diagram’s caption or the surrounding text. Alternatively, it is also possible to use the stereotype

«conceptual» or «design» within the diagram itself.

© Copyright SAP AG 2007 Page 5

More specific characteristics of the abstraction levels for a particular diagram type are explained in the

section describing the diagram type.

The following sections contain lists denoting permissions for diagram elements related to the corresponding

diagram types covered by the standard. A more detailed description is provided for each specific diagram

type.

The columns Conceptual Level and Design Level in the element tables indicate whether an element is

applicable for that level or not. Please refer to the following symbols:

• X indicates that those elements are to be used in regular case (SHOULD)
3

• O (OPTIONAL) indicates that those elements may be used in some cases (MAY)

• - indicates that those elements are not to be used on the respective level in any case (MUST NOT)
4

Please note that all elements that are not explicitly listed here are disallowed. The element lists do contain

some of the most common disallowed elements already. However, it is important that these lists are not

exhaustive.

This also implies that elements, which are newly introduced in versions later than the UML version covered

(see beginning of section 2) in TAM are disallowed by default. TAM would have to be modified in order for

these new elements to be allowed.

2.1 Diagram Types for Structural Descriptions

2.1.1 Component/Block Diagram

2.1.1.1 Purpose

The new Component/Block diagram as described in this document is based on UML component diagrams

and integrates aspects of the FMC
5
 Block diagram. It intends to describe a static structure of a (software)

system and, thus, provides a conceptual view on the architecture of this particular system. An extension to

the UML meta model is defined within the scope of this standardized modeling in order to formally extend the

basic UML component diagrams. For further details on semantics and graphical notation please refer to

Appendix A: Component/Block Diagram.

Basically, the Component/Block diagram describes a system using active (agents) and passive (storages,

channels) visual elements. The connection is established by arcs identifying how agents can access passive

elements (read, write, and modify). On conceptual level only the block diagram elements agents, storages,

channels, and accesses are used to describe a system. On design level it is possible to, additionally,

integrate UML component elements (component, interfaces, and connectors) describing specific regions of

the system in more detail. Characteristically, these regions are of central interest for implementation.

3
 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT",

“RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119.

If a certain diagram element marked as SHOULD is not necessarily needed in a particular diagram, this is a valid reason (in

the sense of RFC 2119) not to use it. This is because not each and every element is required to complete a diagram in any

circumstances.

4
 In order to achieve a common understanding of standardized diagrams, it is important that the number of allowed elements

is limited. An effective restrain of diagram elements is hereby achieved by marking the no-use elements as “MUST NOT”

instead of “SHOULD NOT”.

5
 FMC stands for “Fundamental Modeling Concepts”, a modeling technique that has been used at SAP since 1990. Refer to

http://www.fmc-modeling.org for more information.

© Copyright SAP AG 2007 Page 6

2.1.1.2 Abstraction Levels

Component/Block diagrams are available on conceptual level and design level.

2.1.1.3 Diagram Elements
6

Element Brief Description Conceptual

Level

Design Level

Agents

Active elements, which are capable of doing a certain

action.

Agents can contain agents, storages, subsystems,

components and classes (nesting).

X X

Channels

Passive elements that are used for communication

between agents. All transferred information is

volatile.

Optionally with request and/or data flow direction.

X X

Storages

Passive elements on which agents can act upon.

Usually, storages contain data of any kind.

Storages can be nested within agents, storages and

components/subsystems.

X X

Accesses

(Read, Write,

Modify)

Access arcs define the way, how agents can access

a passive element.

X X

Components,

Classes,

Subsystems

Implementation-close (active) part of the described

software system, which is embedded in its

environment using well-defined interfaces (provided

and required).

Can implicitly include internal state.

Nesting components, classes and subsystems within

agents is allowed, whereas components are only

allowed to contain components, classes and

storages. Subsystems can contain subsystems,

components, classes and storages.

- X

6
 Please note that, in these tables, the according specializations of meta classes, defined in Appendix A: Component/Block

Diagram, are treated separately from their generalizations (e.g. Agent as specialization of Component).

© Copyright SAP AG 2007 Page 7

Element Brief Description Conceptual

Level

Design Level

Interfaces

(provided,

required)

Interfaces define connection points between

components and their environment. Components

provide a number of services (provided Interfaces)

and rely on services that are provided by others

(required Interfaces)

- X

Connectors

(assembly,

delegation)

Assembly connectors define connections between

matching pairs of provided and required interfaces.

Delegation connnectors describe a forwarding of

information. They are drawn between a port and an

according destination (e.g. interface of the same

type).

- X

Ports

Interaction points between components and their

environment.

Only if intended to be shown explicitly (can be

invisible).

- O

Multiple

Agents/Storages

Explicit visualization of multiple agents or storages by

either staggering the elements or showing three dots

between elements of the same kind.

Only allowed for Agents and Storages, not for

Components, Subsystems, etc.

O O

Protocol

Boundaries

Protocol

Protocol boundaries usually partition a diagram in

order to accentuate certain boundaries in

communication.

O O

Dependencies

Visualiziation of certain dependencies between

components, agents and/or storages. Additionally to

UML standard dependencies, the following types are

defined:

Create (agent/component � agent/component):

dynamic generation of active system parts

(component or agent) e.g. out of a meta-repository

Pointer (storage � storage):

reference-like relationship between contents of

storages

O O

Storages

containing

Agents

Storages are not allowed to contain agents or

components.

(passive elements are not allowed to contain active

ones)

- -

© Copyright SAP AG 2007 Page 8

2.1.1.4 Example Diagrams

Web Browser

HTTP

Web Server

R

Directory Agent

R

Static HTML

Pages

Persistent

Data

Figure 2–1 Conceptual Level Component/Block diagram

Figure 2–2 Design Level Component/Block diagram

© Copyright SAP AG 2007 Page 9

2.1.2 Class Diagram

2.1.2.1 Purpose

Class diagrams describe the structure of (object-oriented) software systems.

2.1.2.2 Abstraction Levels

Class diagrams are available on conceptual level and design level.

On conceptual level, class diagrams show on a rather coarse level the system entities and their

relationships. A class diagram can be a glossary by being more formally than a list explaining the relations

between the terms used. For example, database table modeling in a way comparable to Entity/Relationship

diagrams (E/R diagrams).

On design level concrete classes of the implementation are represented as classes in the model. Primary

goal is the visualization of issues directly related to object-oriented implementation with all relevant details.

2.1.2.3 Diagram Elements

Element Brief Description Conceptual

Level

Design Level

Classes

Instantiable abstractions, for further details see MOF

(Meta-Object Facility).

On conceptual level close to entity types of E/R

diagrams.

X X

Attributes

Classes can have attributes of certain types. O X

Operations

(Methods)

Operations that can be performed by a class. O
7
 X

Association

Representation of relationships. Optionally, roles can

be annotated at the association’s ends.

X X

Aggregation

“has-a” relationship with weak linkage X X

Composition

“has-a” relationship with strong linkage X X

7
 In case that a class diagram on conceptual level is used for E/R-like purposes, it is most likely not useful to use operations.

© Copyright SAP AG 2007 Page 10

Element Brief Description Conceptual

Level

Design Level

Specialization

Visualization of “is-a” relationships between classes. X X

Navigability

Association ends can be navigable in either or both

directions.

O X

Packages

Packages indicate the membership of the shown

classes.

O X

Data types

Preferably used for typing of attributes and operation

parameters and return values.

Alternatively, it can be visualized as a special classifier

defining the data type.

O X

Visibility

An element’s visibility determines in which ways it can

be accessed.

- X

Interfaces

Interfaces contain a number of declarations. These can

be implemented by classifiers (e.g. class or

component).

- X

Interface

Realization

Realization (Implementation) of an interface. - X

Templates

Parameterization of classifiers (usually classes). - X

© Copyright SAP AG 2007 Page 11

Element Brief Description Conceptual

Level

Design Level

Dependencies

Use, Import, Instantiate - O

Association

classes

Association that also has properties of a class. O O

N-ary

Associations

Association with N ends (N > 2). O -

Multiple

Specialization

Specialization from multiple base classes. O O
8

Instances

(Objects)

Instances of classes showing structures at run-time. - O

Qualification Qualified associations. - -

8
 Please note that it has to be possible to reflect modeled multiple inheritance in the according implementation by using the

particular technology (e.g. the programming language or framework).

© Copyright SAP AG 2007 Page 12

2.1.2.4 Example Diagrams

Figure 2–3 Class diagram Conceptual Level

Figure 2–4 Class diagram Conceptual Level

© Copyright SAP AG 2007 Page 13

persistent_datanavigation_hierarchy

*
1

source

1 *

target

1

*

«constructor»

+ Category()

«constructor»

+ Category(eId: String, eName:

String, eDescription: String,

eStatus: Integer)

+ getId(): String

+ getName(): String

+ getDescription(): String

+ addLink(link: Link)

- id: String

- name: String

- description: String

status: Integer

Category

«constructor»

+ Link()

«constructor»

+ Link(eId: String, eLabel: String,

eUrl: String, eDescription:

String, eStatus: Integer)

+ getId(): String

+ getLabel(): String

+ getUrl(): String

+ getDescription(): String

- id: String

- label: String

- url: String

- description: String

status: Integer

Link

+ makePersistent()

«interface»

IPersistent

status: Integer

Reference

«import»

«constructor»

+ LinkClassification(link: Link)

«constructor»

+ LinkClassification()

+ getProminent: Boolean

status: Integer

- isProminent: Boolean

LinkClassification*

1

- isProminent:

Boolean

NormalLink
External

DirectoryLink
NewsLink

Figure 2–5 Class diagram Design Level

© Copyright SAP AG 2007 Page 14

2.1.3 Package Diagram

2.1.3.1 Purpose

Package diagrams describe dependencies that exist between packages. Consequently, a general overview

of visibility and containment of classes is provided.

Even though packages are already included in class diagrams, the context of package diagrams is slightly

different. Whereas in class diagrams, packages are usually used in order to show assignments of classes to

packages, package diagrams are used to visualize inter-package dependencies and modular aspects of the

package structure.

2.1.3.2 Abstraction Levels

Package diagrams are available on design level only.

2.1.3.3 Diagram Elements

Element Brief Description Conceptual

Level
9

Design Level

Packages

Packages can contain classes, components, etc. n/a X

Dependencies

For example merge, import n/a X

2.1.3.4 Example Diagrams

java.sql

Yeti

DataAccess «import»

UserInterface

Figure 2–6 Package Diagram

9
 A column which is displayed with a grey background indicates that the respective level is not applicable for that diagram

type. In addition all elements are marked as n/a indicating that these elements are not applicable for that level.

© Copyright SAP AG 2007 Page 15

2.2 Diagram Types for Behavioral Descriptions

2.2.1 Use Case Diagram

2.2.1.1 Purpose

Use case diagrams help to specify the desired functionality of a system. Therefore, use cases (diagram

elements) describe a certain behavior and associations describe which actors take part in those. They are

not supposed to show detailed technical aspects.

Please notice, that it is important to distinguish between use cases and use case diagrams. The latter are

only intended for structuring requirements or functionality graphically. They may also be used to identify,

structure and visualize user interfaces of the system. For this, use case diagrams need a further detailed

description. This can be accomplished according to a template which is not part of the standard. Typically,

such a template covers the following aspects:

Business goal - A short description of the interaction described in the use case and eventually its

business context

Preconditions - Must be fulfilled in order an interaction to be performed

Interaction scenario(s) - A use case may result in different sequences of execution of

communication steps by the involved actors. At least one scenario is to be defined: the happy day

scenario. The most important alternatives should be described in separate scenarios.

Post-conditions - State of the system after a successfully accomplished interaction is to be

described in the post-conditions.

Additional sections might contain e.g. error handling or special requirements. The interaction scenarios may

be a pure textual description, for more complex interactions, the use of sequence diagrams or activity

diagrams on conceptual level is recommended.

2.2.1.2 Abstraction Levels

Use case diagrams are available on conceptual level only.

2.2.1.3 Diagram Elements

Element Brief Description Conceptual

Level

Design Level

Use Cases

Representation of a desired functionality. X n/a

Actors

Actors participate in a particular Use Case (e.g.

human actor, machine actor).

X n/a

© Copyright SAP AG 2007 Page 16

Element Brief Description Conceptual

Level

Design Level

Include

Dependency

Containment of Use Cases. X n/a

Specialization

Inheritance of Use Cases and/or Actors O n/a

Extends

Dependency

Extension of a Use Case under certain

circumstances. Might be annotated with a condition.

O n/a

Extension Points

Coupling point for extensions in form of other Use

Cases.

O n/a

© Copyright SAP AG 2007 Page 17

2.2.1.4 Example Diagrams

Figure 2–7 Use Case diagram

2.2.2 Activity Diagram

2.2.2.1 Purpose

Activity diagrams provide behavioral descriptions of a system. Actions are utilized to show certain units of

operation. Control Flow (and optionally Object Flow) is visualized as connecting arcs between the Actions.

Optionally, Activity diagrams can describe interactions of different entities by visualizing boundaries as

swimlanes. Please notice that the whole sequence of actions (including Initial and Activity-Final Node) is

called Activity.

2.2.2.2 Abstraction Levels

Activity diagrams are available on conceptual level and design level.

On conceptual level, activity diagrams describe more abstract views than those on design level. This means,

that the whole diagram explains a process on quite a general level. Characteristically, actions are operations

that describe a certain task without providing concrete implementation information.

On design level, more detailed information regarding the implementation is provided. Generally, each action

should be mappable onto a certain piece of implementation (for example, procedure, function, loop, etc.).

© Copyright SAP AG 2007 Page 18

2.2.2.3 Diagram Elements

Element Brief Description Conceptual

Level

Design Level

Actions

Steps in execution X X

Control Flow

Connections between actions showing the order of

execution and time dependencies

X X

Initial /

Activity-Final

Node

Initialization and termination of an activity. X X

Decision /

Merge

Show basic mechanisms of the control flow (if, loop, …) X X

Fork/Join

Parallel execution and synchronization points. X X

Object Flow

Exchange of objects between activities. O O

Flow-Final

Node

Termination of a flow (object or control flow). O O

Swimlanes

Partitioning the activity according to different contextual

entities (e.g. objects, namespaces, and subsystems).

Activities are unambiguously assigned to the particular

entity they belong to.

O O

© Copyright SAP AG 2007 Page 19

Element Brief Description Conceptual

Level

Design Level

Exception

Handlers

On occurrence of an exception, the linked handler is

supposed to maintain a proper functioning.

- O

Interruptible

Regions

Explicitly marked region of an activity that contains a

number of actions. During any of the contained actions a

certain interruption is possible.

All tokens inside the region are removed in case of

exception.

Note: “InterruptibleRegion” was renamed to

“InterruptibleActivityRegion” in UML v2.1.

- O

Expansion

Region

Separate region of an activity with explicit inputs and

outputs.

- -

Signals

(Events)

Signals can be exchanged between objects. - -

Send/Receive

Signal (Event)

Actions that are related to the transmission of signals. - -

States obsolete (UML v1.x) - -

© Copyright SAP AG 2007 Page 20

2.2.2.4 Example Diagrams

Figure 2–8 Activity Diagram Conceptual Level

© Copyright SAP AG 2007 Page 21

2.2.3 Sequence Diagram

2.2.3.1 Purpose

Sequence diagrams are intended to show interactions between objects in chronological order (for example,

system parts, classes, components). The central aspect covered is message exchange between the objects.

Although UML defines all elements necessary for complete behavioral descriptions, it is recommended to

concentrate on sequential flows without many conditions or parallel execution. Characteristically, the

resulting diagrams are more exemplary than generic.

UML also introduces an alternative representation called Interaction Overview Diagram
10

 as a hybrid of

Activity diagrams and Sequence diagrams. In some cases this kind of diagrams can be useful in order to

visualize the control flow combined with interactions of several entities.

Since not all modeling at SAP is based on object orientation, it is allowed that a lifeline does not necessarily

correspond to an object in the sense of object orientation but also e.g. to an ABAP function module, a C

function or even a web service. This implies that messages do not have to be method calls in any case, but

may also be any other kind of message or call as long as this message is applicable for the kind of “object”

used. It is, thus, necessary to describe the kind of objects in the text provided with the diagram, if it differs

from objects as OO-objects.

2.2.3.2 Abstraction Levels

Sequence diagrams are available on conceptual level and design level.

On conceptual level, sequence diagrams describe interactions in rather general terms. Typically, the objects

used on conceptual level correspond to agents modeled in a conceptual level component/block diagram.

On design level, messages are usually method or function calls between objects that do exist in real

implementation. All modeled information should be mappable onto interactions in the real system or the

system-to-be.

2.2.3.3 Diagram Elements

Element Brief Description Conceptual

Level

Design Level

Lifelines

All entities participating in a particular interaction are

objects. Each object owns exactly one lifeline.

On conceptual level, also human interaction is

allowed to be shown (based on human agents, which

are specializations of the meta class Component)

Part decomposition is also allowed.

X X

Messages

Objects exchange messages (asynchronous,

synchronous, return message).

This also includes the special case of messages

originating and arriving at the same lifeline.

X X

Object Creation

create

Objects are capable of creating new objects. - X

10
 These are treated as a subform of Sequence diagrams by the technical architecture modeling standard although they are

formally defined as a specialization of Activity diagrams by the UML Superstructure.

© Copyright SAP AG 2007 Page 22

Element Brief Description Conceptual

Level

Design Level

Lifeline

Termination

Destruction of an object. - X

Return Values

Synchronous calls usually require return values.

On conceptual level, the return messages might be

left out for reasons of simplicity.

O X

Method

Activation

Visualization of activation on a lifeline.

Additionally, differently shaded activation without

focus of control is allowed to be shown if the object is

(actively) waiting for an answer of a synchronous call

(see examples).
11

O O

Interaction Use

Referencing another diagram. O O

Combined

Fragments

Combined Fragments allow certain regions with

special properties (e.g. loop, alternative, option,

parallel execution)

O O

Timing/Duration

constraints

Define timing and duration constraints at certain

moments.

(Also includes deferred messages)

O O

State Invariants

Constraint that is evaluated at run time. It is placed on

a lifeline and has the semantics of an invariant.

- O

Continuations Continuations of different branches. - -

11
 The notation variant differentiating between focus of control and without control was part of the first versions of UML,

starting with 0.8. It is helpful in situations, where detailed communication with all returning messages is shown, because it

then emphasizes the main thread of control in the overall diagram. However, it cannot be applied in all situations. Therefore it

is optional.

© Copyright SAP AG 2007 Page 23

Element Brief Description Conceptual

Level

Design Level

Coregions Coregions define a certain time interval, in which the

temporal ordering of the arrival of messages is not of

relevance (only the arrival at all).

- -

1.x-style

conditions &

parallel

processing

“Duplication” of lifelines. (UML 1.x)

Obsolete, since UML version 2.0 introduced

combined fragments as means for modeling

conditions and parallel execution.

- -

2.2.3.4 Example Diagrams

Web Browser

 Click Link ‚Add Link’

Web Server

Click ‚Submit’

Request Page

Transmit Form Data

(HTTP POST)

Request Images

Insert Data

Figure 2–9 Sequence diagram Conceptual Level

© Copyright SAP AG 2007 Page 24

Figure 2–10 Sequence diagram Design Level

© Copyright SAP AG 2007 Page 25

2.2.4 State Machine Diagram

2.2.4.1 Purpose

These diagrams semantically define state machines of objects, components, subsystems, etc. Therefore,

states (possibly nested) and valid transitions between them are the main elements.

2.2.4.2 Abstraction Levels

State machine diagrams are available on conceptual level only.

2.2.4.3 Diagram Elements

Element Brief Description Conceptual

Level

Design Level

States

States the respective thing is in (invariant).

(including composite states for structural reasons)

X n/a

Transitions

Transitions between states are triggered by an event.

(event[guard]/action)

X n/a

Initial/Final

States

Initialization or termination of a State Machine

diagram.

X n/a

Submachine

States

Specification of a state by the help of another state

machine.

O n/a

Concurrent

Regions

Concurrency within a composite state. O n/a

Entry/Exit point

Pseudo states used for entering/leaving a composite

state.

O n/a

Choice

Pseudo state indicating a decision. O n/a

© Copyright SAP AG 2007 Page 26

Element Brief Description Conceptual

Level

Design Level

Junction Sequencing of transitions in order to e.g. define

complex guard-conditions.

- n/a

History States States storing the configurations of composite states.

(applying to deep and shallow history state)

- n/a

Fork/Join Splitting transitions into vertices to states in a number

of concurrent regions.

- n/a

Actions Explicitly modeled actions in a State Machine

diagram.

- n/a

Receive/Send

Signal

(Event)

Actions that are related to the transmission of signals. - n/a

2.2.4.4 Example Diagrams

Figure 2–11 State Machine Diagram

© Copyright SAP AG 2007 Page 27

2.3 UML Profiles

Profiles are a lightweight extension mechanism to the UML meta model. The SAP standardized technical

architecture modeling defines, which profiles are allowed to be used. No profiles except for the ones explicitly

listed below are intended to be used.

Presently, TAM does not contain nor refer to any profiles. If necessary, existing profiles might be included

into this document as references later. Additional profiles might also be created and included into the

standard during an update process.

© Copyright SAP AG 2007 Page 28

3 Appendix A: Component/Block Diagram

3.1 Overview

Describing the architecture of a software system on conceptual level requires the modeling method to enable

the user to express different facets of the system. However, it is of essential necessity that the resulting

diagrams do not become too complex in order to be understood quickly. The diagrams should serve their

purpose of covering all aspects that are particularly interesting for the addressees of the diagram with a

maximum of understandability and readability. Usually, this kind of rather abstract diagrams is utilized for

showing the general structure of a system including the embedding in its environment. Detailed

implementation decisions are too concrete for this abstraction level. This correlates with the circumstance

that these diagrams are mostly intended to be used in the early project phases and of course for Knowledge

Transfer purposes. But still, it is of course desired to be able to link these diagrams to others that are more

focused on implementation aspects in course of the development phase.

Along with two other diagram types manifested in FMC (Fundamental Modeling Concepts)
12

 they were

especially developed for serving exactly the purpose of modeling systems on a high level and, therefore,

improving (human) communication of those systems. Block diagrams help standardizing and formalizing

diagrams and, thus, help to avoid ad-hoc or freestyle notation.

Besides, the Unified Modeling Language (UML) continuously became more and more popular all over the

world. Today, it can be seen as the de-facto standard. Nevertheless, it lacks the facility to effectively model

the aforementioned aspects of abstract system structures, their environment and so forth. This certainly

results from its primary targeting at aspects rather close to implementation. This again can be seen as a

consequence of the evolutionary history of UML.

UML diagram types form the basis for the standardized technical architecture modeling although Block

diagrams are the most suitable means for modeling structural aspects of a system’s architecture. Therefore,

it is desired to integrate Block diagrams into UML enabling the best possible linkage to other diagram types

and, thus, provide a possibility to formally refine Block diagrams (on design level) towards implementation.

This is achieved by defining an extension to UML on level of the meta model. Component diagrams pose a

diagram type, which is appropriate to describe composite structures in detail. The means provided can be

used in order to show structures that are close to implementation. By specializing a number of elements

taken from the Component diagrams and applying syntax and semantics of Block diagram elements it is

possible to completely integrate Block diagrams into UML. It is even possible to explicitly define areas of

special interest for implementation by using UML subsystems, components, ports etc. only in particular

regions of one diagram. In doing so, a number of nesting rules have to be considered.

This chapter formally describes all changes to the meta model in detail (similar to the UML Superstructure).

The introduced package BasicBlockElements contains all these changes and is merged into the according

native packages.

12
 The sound basis of the development of FMC was established in the 1970s where Siegfriend Wendt firstly initiated research

activities related to what is known as FMC today. The methodology, the notation as well as the name evolved over the years.

So, FMC was formerly labeled as SPIKES (Structured Plans for Improving Knowledge Transfer in Engineering of Systems)

for a while.

© Copyright SAP AG 2007 Page 29

3.2 Abstract Syntax

Basic

BlockElements

InternalStructures

Ports

«merge»

«merge»

PackagingComponents

«merge»

Kernel

«merge»

Dependencies
«merge»

Additional

BlockConcepts

«merge»

StructuredClasses

«merge»

Figure 3–1 Dependencies between packages described in this chapter
13

13
 Please note that transitive dependencies are not shown.

© Copyright SAP AG 2007 Page 30

Figure 3–2 The metaclasses that define the basic Block diagram elements

© Copyright SAP AG 2007 Page 31

Figure 3–3 Additional Block diagram concepts used for didactical purposes

Dependencies

«metaclass»

Dependency

AdditionalBlockConcepts

«metaclass»

Generation

«metaclass»

Pointer

BasicBlockElements

«metaclass»

Storage
*

1+clientDependency

{redefines clientDependency}

+origin

{redefines client}

*

1

+supplierDependency

{redefines supplierDependency} +destination

{redefines supplier}

StructuredClasses

«metaclass»

Class
*

1+clientDependency

{redefines clientDependency}

+generator

{redefines client}

*

1..*

+supplierDependency

{redefines supplierDependency} +generatedContent

{redefines supplier}

Figure 3–4 Additional Block diagram concepts describing special dependencies

© Copyright SAP AG 2007 Page 32

3.3 Class Descriptions

3.3.1 Access (from BasicBlockElements)

Generalizations

• “Connector (from InternalStructures)” in UML Superstructure

Description

Access is an abstract meta class derived from InternalStructures::Connector. Concrete accesses are

modeled by subclasses of access.

Formally, an Access describes a contract between storages and an active component covering the possible

access mode of data contained in the storage.

Attributes

No additional attributes

Associations

• accessEnd: AccessEnd [1..*]

Each access has to have at least one access end. These have to end at different access ports. The

set of access ends is ordered. (Subsets Connector.end)

Constraints

[1] If the inherited attribute kind (of type ConnectorKind) is set to the enum-value assembly, an access

must only be defined between exactly one active component (agent, component, subsystem, class)

and one (or more) storages (respectively to one of their access ports).

[2] If the inherited attribute kind (of type ConnectorKind) is set to the enum-value delegation, an access is

the direct continuation of the access arriving at the outside of the particular access port. Thus, it has to

delegate all arriving signals to a nested storage (respectively to one of its access ports).

[3] Each Access has at least one AccessEnd on side of the storage(s) and a common ConnectorEnd on

side of the active component..

Semantics

An access is used to show a possible access of an active component (e.g. agent, component) on a storage.

Write accesses define that an active component is able to write the contents of a storage but not to read it.

Read accesses define that an active component is able to read the contents of a storage but not to write it.

Modifying accesses define that an active component is able to read and write the contents of a storage (in

one step).

Notation

Accesses are drawn as directed edges. Their direction determines what kind of access is being used.

An edge pointing from an active component (e.g. agent, component, subsystem, class) to a storage is a write

access.

An edge pointing from a storage to an active component is a read access.

Two edges pointing in one direction each (usually in shape of a semicircle) is a modifying access.

© Copyright SAP AG 2007 Page 33

Agent

reading

Agent

modifying

Storage 1

Storage 2

Agent

writing

Figure 3–5 Notation of agents accessing storages

The figure shows a graphical simplification of assembly and delegation accesses to the nested storages 1 &

2. Formally, there are two accesses between the agent writing and storage 1. They are graphically simplified

into one arc.

The following figure shows two equivalent ways of accessing nested storages. Please note that the dotted

access port shown is usually invisible. Of course, this simplification rule can also be applied cascaded.

Figure 3–6 Graphical simplification of assembly and delegation accesses

3.3.2 AccessEnd (from BasicBlockElements)

Generalizations

• “ConnectorEnd (from Ports)” in UML Superstructure

Description

In the meta model, an AccessEnd is a subtype of Ports::ConnectorEnd. It is the special end of an access on

side of the storage.

Attributes

No additional attributes

Associations

• role: AccessPort [1]

Each access end has to be attached to an access port. (Redefines ConnectorEnd.role)

Constraints

[1] An access end always belongs to an access.

Semantics

An access end realizes the attachment of an access to a storage. Each access end actually ends at an

access port (not at a usual port) owned by the storage.

© Copyright SAP AG 2007 Page 34

Access ends are not visualized in a diagram.

Notation

Access ends are invisible.

3.3.3 AccessPort (from BasicBlockElements)

Generalizations

• “Port (from Ports)” in UML Superstructure

Description

As specialization of Ports::Port, each AccessPort belongs to a Storage and each Storage can own multiple

AccessPorts (but no usual Ports). All kinds of information exchange has to be accomplished by utilizing

AccessPorts.

It is helpful to imagine that trivial access routines are provided by the storage. Interfaces (not explicitly

shown) are exposed in order to access the storage using these basic operations.

Attributes

No additional attributes

Associations

• end: AccessEnd [*]

The access ends attached to the access port. (Redefines ConnectableElement.end)

Constraints

[1] An access port can only be owned by storages, but not by agents, components, subsystems, classes.

[2] The inherited attribute isBehavior (of type Boolean) is set to false.

Semantics

An access port is a special interaction point allowing a storage to be accessed by active components. All

altering or reading of a storage is accomplished using access ports. Thus, only storages are allowed to own

access ports.

Access ports are not visualized in a diagram.

Notation

Access ports are invisible.

3.3.4 Agent (from BasicBlockElements)

Generalizations

• “BlockElement (from BasicBlockElements)” on page 35

Description

Agents are BlockElements. They can either be connected to agents via channels, to components via

interfaces or to storages via accesses. They are allowed to contain agents, subsystems, components,

classes and storages.

Attributes

• isHuman: Boolean

If true, indicates that the agent represents a human rather than a technical component. If false, the

agent can be anything different from a human as long as it is active (e.g. hardware or software).

Associations

© Copyright SAP AG 2007 Page 35

• ownedChannelPort: ChannelPort [*]

References a set of channel ports that an agent owns. (Subsets EncapsulatedClassifier.ownedPort)

Constraints

[1] If an agent is human, it is not allowed to contain any elements (structural elements).

Semantics

Agents are active components of a system and usually communicating with each other using channels

and/or accessing storages. Agents represent parts of a system on a conceptual level. It is possible to nest

agents within other agents or that storages are nested within agents. If an outer agent accesses a storage or

communicates via a communication channel, this means that possibly all contained agents can use this

channel and/or access.

An agent can be concretized regarding implementation by refining an agent using subsystems, components

and/or classes.

It is also possible to show anonymous agents which are merely a grouping of agents. In combination with

accesses and/or channels, groupings are used as a graphical simplification. The figure below shows Agent A

& B both accessing the storage but only Agent A communicating with Agent 1 (and Agent B with Agent 2).

Even though classes (with only the name compartment) and agents have the same notation, the context

clarifies whether it is a class or an agent.

Notation

Agents are shown as rectangular elements. Their name is placed inside the rectangle. The fill color of the

rectangle may vary in order to serve didactical or specific semantical purposes.

If a human agent is shown, a stickman is shown inside the rectangle.

A grouping agent (anonymous) usually has a thinner line than the others.

Agents can also have L-/U-/T-shape.

Figure 3–7 Example showing agents

Storage

Agent A

Agent B

Agent 1

Agent 2

Figure 3–8 Grouped agents accessing a storage

3.3.5 BlockElement (from BasicBlockElements)

Generalizations

© Copyright SAP AG 2007 Page 36

• “Component (from PackagingComponents)” in UML Superstructure

Description

BlockElement is an abstract meta class generalizing the standard block diagram elements.

Concrete nesting rules are defined in the according specializations of BlockElement. Regardless of the

specialized BlockElement, it is disallowed to place them overlapping in a diagram. All elements have to be

placed non-overlapping.

Attributes

• isGrouping: Boolean

If true, indicates that the block element is a anonymous grouping of other block elements. See the

notation section for slightly different notation in this case. If false, the block element, usually, carries

a name and a semantical meaning within the diagram. Please note that it can also contain block

elements in this case.

Associations

No additional associations

Constraints

No additional constraints

Semantics

Grouped block elements are usually introduced by the modeler for didactical purposes. They help reducing

the number of accesses and channels and can help to clarify a common context of block elements.

Block elements can be shown as multiple elements of the same kind. This can either be accomplished by

staggering two agents or storages and placing two dots in the corner or, alternatively, by using three dots in

between the elements of the same kind.

Further definitions on semantics are given for the concrete subclasses.

3.3.6 Channel (from BasicBlockElements)

Generalizations

• “Connector (from InternalStructures)” in UML Superstructure

Description

Similarly to an access, the Channel is derived from InternalStructures::Connector. It formally describes a

contract between two agents.

Attributes

• protocolName: String

Information about which protocol is being used or what kind of information passes the channel.

Associations

• channelEnd: ChannelEnd [2..*]

A channel consists of at least two channel ends, each representing the participation of active

components in communication of any kind. The set of channel ends is ordered. (Redefines

Connector.end)

• requestingChannelEnd: ChannelEnd [*]

A special channel end indicating that the active component to which it is attached has a requesting

position during communication. (Subsets Channel.channelEnd)

• dataflowChannelEnd: ChannelEnd [*]

A special channel end indicating that the active component to which it is attached has a position

© Copyright SAP AG 2007 Page 37

receiving a noteworthy amount of data during communication (data flow). (Subsets

Channel.channelEnd)

Constraints

[1] A channel must only be defined between agents.

[2] The number of dataflow channel ends indicating the data flow has to be smaller than the total number

of channel ends and has to be non-ambiguous.

[3] The inherited attribute kind (of type ConnectorKind) is set to the enum-value assembly.

Semantics

Communication channels are used for any kind of communication between agents. Formally, they also

define (a rather general) pair of required/provided interface. All information that is exchanged, however, can

be of any kind. The channel can be annotated with the particular protocol used or other information regarding

the communication.

A channel can have requests being sent into one or both directions. Furthermore, the dataflow direction can

also be defined.

Channels can only be used between agents (not components), because the communication is rather abstract

and not concrete enough for implementation details. When modeling parts of a diagram close to

implementation using components, these have to be fully specified using provided/required interfaces.

Please note that communication channels as defined in the FMC meta model are formally locations and,

thus, have a certain similarity to storages. In this extension of the UML meta model, channels are seen as

connectors. However, this difference in definition does not imply a difference in interpretation of this diagram

element.

Notation

Channels are circles with a white fill (by default). They are connected to agents using arcs.

Optionally, the request direction can be denoted by adding a “R” with a black triangle pointing in the same

direction as the requests are transmitted. It is also possible that requests are sent in both directions. In this

case, one “R” and two triangles are drawn.

For channels, a graphical simplification similar as for accesses is allowed.

Additionally, the dataflow direction can be shown by adding arrow heads pointing into the same direction.

Figure 3–9 Variations of channels

3.3.7 ChannelEnd (from BasicBlockElements)

Generalizations

• “ConnectorEnd (from Ports)” in UML Superstructure

Description

© Copyright SAP AG 2007 Page 38

In the meta model, a ChannelEnd is a subtype of Ports::ConnectorEnd. It is the special connector end on

both ends of the channel.

Attributes

No additional attributes

Associations

• role: AccessPort [1]

Each channel end has to be attached to a channel port. (Redefines ConnectorEnd.role)

Constraints

[1] A channel end always belongs to a channel.

Semantics

A channel end realizes the attachment of channels to an agent. Each channel end actually ends at a channel

port (not at a usual port) owned by the agent.

Channel ends are not visualized in a diagram.

Notation

Channel ends are invisible.

3.3.8 ChannelPort (from BasicBlockElements)

Generalizations

• “Port (from Ports)” in UML Superstructure

Description

A ChannelPort is a specialization of Ports::Port. Each ChannelPort belongs to an Agent and each Agent can

own multiple ChannelPorts (additionally to normal Ports). A ChannelPort can only be owned by Agents,

because channels are allowed to be used between Agents only.

Attributes

No additional attributes

Associations

• end: ChannelEnd [*]

The channel ends attached to the channel port. (Redefines ConnectableElement.end)

Constraints

[1] A channel port can only be owned by agents, but not by, storages components, subsystems, classes.

[2] The inherited attribute isBehavior (of type Boolean) is set to false.

Semantics

A channel port is a special interaction point allowing an agent to communicate with another agent.

Channel ports are not visualized in a diagram.

Notation

Channel ports are invisible.

3.3.9 Generation (from AdditionalBlockConcepts)

Generalizations

• “Dependency (from Dependencies)” in UML Superstructure

© Copyright SAP AG 2007 Page 39

Description

A Generation is a special kind of Dependency.

Attributes

No additional attributes

Associations

• generator: Storage [1]

The active component generating the new active component. (Redefines Dependency.client)

• generatedContent: Storage [1..*]

The active component being generated. (Redefines Dependency.supplier)

Constraints

[1] The generator as well as the generatedContent is not allowed to be a Storage.

Semantics

A component might be able to generate a new active component. This can e.g. be accomplished by

interpreting information from a meta data repository.
14

Notation

A generation dependency is shown like a normal dependency (dashed line with open arrow head) with the

keyword «generate».

3.3.10 ModifyAccess (from BasicBlockElements)

Generalizations

• “Access (from BasicBlockElements)” on page 32

Description

Concrete specialization of Access.

Attributes

No additional attributes

Associations

No additional associations

Constraints

No additional constraints

Semantics

See Access (from BasicBlockElements)

Notation

See Access (from BasicBlockElements)

3.3.11 MultiplicityDots (from AdditionalBlockConcepts)

Generalizations

14
 This generation of active content is in a way comparable to structure variances in FMC. The generation dependency was

introduced as a lightweight substitute to the quite quite complex structure variances.

© Copyright SAP AG 2007 Page 40

• “Comment (from Kernel)” in UML Superstructure

Description

MultiplicityDots are an additional information which is, therefore, manifested as a special comment.

Please note that these dots are not formally defined in FMC but, however, they are in frequent use.

Attributes

No additional attributes

Associations

• multipleBlockElement: BlockElement [*]

The concrete block diagram elements, the multiplicity dots refer to. (Redefines

Comment.annotatedElement)

Constraints

[1] Multiplicity dots must refer to block diagram elements of the same kind (either only agents or

storages).

[2] The inherited property body has to be empty.

Semantics

Multiplicity dots can visualize multiplicity in the existence of block diagram elements of the same kind.
15

 If

there are e.g. channels attached to a multiple agent, this channel usually is also multiplied (see example).

The dots are only allowed to show multiplicity of block diagram elements, but not for subsystems,

components, classes, etc.

Notation

Three black dots in between the block diagram elements, which should be shown as multiply existent, are

shown.

S
to
ra
g
e

Figure 3–10 Usage of multiplicity dots

3.3.12 Pointer (from AdditionalBlockConcepts)

Generalizations

15
 The dots mainly intend to show that multiplicity itself occurs but do not primarily aim at describing this multiplicity in concrete

numbers. In the sense of UML, these dots usually represent a concrete multiplicity of 1..*. However, it is possible to add digits

to the names of the block diagram elements (see example) and express a more precise multiplicity.

© Copyright SAP AG 2007 Page 41

• “Dependency (from Dependencies)” in UML Superstructure

Description

A Pointer is a special kind of Dependency.

Attributes

No additional attributes

Associations

• origin: Storage [1]

The storage referencing another. (Redefines Dependency.client)

• destination: Storage [1]

The storage being referenced. (Redefines Dependency.supplier)

Constraints

No additional constraints

Semantics

A pointer allows the visualization of a storage referencing the contents of another.

Notation

A pointer dependency is shown like a normal dependency (dashed line with open arrow head) with the

keyword «pointer».

3.3.13 ProtocolBoundary (from AdditionalBlockConcepts)

Generalizations

• “Comment (from Kernel)” in UML Superstructure

Description

A ProtocolBoundary adds additional information about the operation of communication channels to the

diagram. Because of this, it is manifested as a special comment.

Attributes

• protocolName: String

Information about which protocol is being used or what kind of information passes the channels on

the boundary. (Redefines Comment.body)

Associations

No additional associations

Constraints

No additional constraints

Semantics

Protocol boundaries impose a means for visualizing the common protocol that is used by a number of

communication channels.

Often, protocol boundaries are also used to separate elements into different logical regions. In this case, no

protocol name is annotated. However, it is important to notice that the protocol boundary does not add any

semantics to a diagram (e.g. containment or grouping information). Therefore, it is not a substitute for e.g. a

surrounding agent shown around a number of elements.

Notation

© Copyright SAP AG 2007 Page 42

A protocol boundary is shown as a dashed line lying under a set of communication channels. Additionally,

the protocol’s name is annotated.

Figure 3–11 Use of a protocol boundary

3.3.14 ReadAccess (from BasicBlockElements)

Generalizations

• “Access (from BasicBlockElements)” on page 32

Description

Concrete specialization of Access.

Attributes

No additional attributes

Associations

No additional associations

Constraints

No additional constraints

Semantics

See Access (from BasicBlockElements)

Notation

See Access (from BasicBlockElements)

3.3.15 Storage (from BasicBlockElements)

Generalizations

• “BlockElement (from BasicBlockElements)” on page 35

Description

Storages are BlockElements. Each Storage can own multiple AccessPorts (but no usual Ports) through

which it can be accessed by active components.

Attributes

No additional attributes

Associations

© Copyright SAP AG 2007 Page 43

• ownedAccessPort: AccessPort [*]

References a set of access ports that a storage owns. (Redefines

EncapsulatedClassifier.ownedPort)

Constraints

[1] A storage is only allowed to own access ports.

[2] All communication has to be accomplished via accesses and access ports.

[3] Storages are not allowed to contain behavior of any kind. Thus, definition of methods, etc. is

prohibited.

[4] Storages are not allowed to contain active components of any kind (e.g. agents, components,

subsystems, classes). Only other storages can be nested.

Semantics

Storages are passive system components and are used to store any kind of information (volatile or

persistently). They are not able to contain behavior except some trivial access routines used for accessing

the storage’s contents. They can only be accessed via access ports and attached access ends.

Storages can be accessed by all kinds of active system components (e.g. subsystems, components,

classes).

Similarly to agents, a grouping storage (anonymous) can be used in order to reduce the number of accesses.

Notation

A storage is a round node. Its name is located inside. The fill color of the storage may vary in order to serve

didactical or specific semantical purposes.

A grouping storage (anonymous) usually has a thinner line than the contained ones.

Storages can also have L-/U-/T-shape.

Figure 3–12 Nesting of storages

3.3.16 WriteAccess (from BasicBlockElements)

Generalizations

• “Access (from BasicBlockElements)” on page 32

Description

Concrete specialization of Access.

Attributes

No additional attributes

© Copyright SAP AG 2007 Page 44

Associations

No additional associations

Constraints

No additional constraints

Semantics

See Access (from BasicBlockElements)

Notation

See Access (from BasicBlockElements)

© Copyright SAP AG 2007 Page 45

4 Links & Literature

UML 2.0 Information by Object Management Group: http://www.uml.org/#UML2.0

UML 2.0 Specification (Superstructure) http://www.omg.org/cgi-bin/doc?formal/05-07-04

Andreas Knoepfel, Bernhard Groene, Peter Tabeling: Fundamental Modeling Concepts – Effective

Communication of IT Systems. Wiley 2006

Fundamental Modeling Concepts (FMC) Homepage: http://www.fmc-modeling.org

	1 Goal and Scope
	1.1 Scope of Standardized Technical Architecture Modeling
	1.2 Currently Out of Scope

	2 Specification of Diagram Types
	2.1 Diagram Types for Structural Descriptions
	2.1.1 Component/Block Diagram
	2.1.1.1 Purpose
	2.1.1.2 Abstraction Levels
	2.1.1.3 Diagram Elements
	2.1.1.4 Example Diagrams

	2.1.2 Class Diagram
	2.1.2.1 Purpose
	2.1.2.2 Abstraction Levels
	2.1.2.3 Diagram Elements
	2.1.2.4 Example Diagrams

	2.1.3 Package Diagram
	2.1.3.1 Purpose
	2.1.3.2 Abstraction Levels
	2.1.3.3 Diagram Elements
	2.1.3.4 Example Diagrams

	2.2 Diagram Types for Behavioral Descriptions
	2.2.1 Use Case Diagram
	2.2.1.1 Purpose
	2.2.1.2 Abstraction Levels
	2.2.1.3 Diagram Elements
	2.2.1.4 Example Diagrams

	2.2.2 Activity Diagram
	2.2.2.1 Purpose
	2.2.2.2 Abstraction Levels
	2.2.2.3 Diagram Elements
	2.2.2.4 Example Diagrams

	2.2.3 Sequence Diagram
	2.2.3.1 Purpose
	2.2.3.2 Abstraction Levels
	2.2.3.3 Diagram Elements
	2.2.3.4 Example Diagrams

	2.2.4 State Machine Diagram
	2.2.4.1 Purpose
	2.2.4.2 Abstraction Levels
	2.2.4.3 Diagram Elements
	2.2.4.4 Example Diagrams

	2.3 UML Profiles

	3 Appendix A: Component/Block Diagram
	3.1 Overview
	3.2 Abstract Syntax
	1.1
	3.3 Class Descriptions
	3.3.1 Access (from BasicBlockElements)
	3.3.2 AccessEnd (from BasicBlockElements)
	3.3.3 AccessPort (from BasicBlockElements)
	3.3.4 Agent (from BasicBlockElements)
	3.3.5 BlockElement (from BasicBlockElements)
	3.3.6 Channel (from BasicBlockElements)
	3.3.7 ChannelEnd (from BasicBlockElements)
	3.3.8 ChannelPort (from BasicBlockElements)
	3.3.9 Generation (from AdditionalBlockConcepts)
	3.3.10 ModifyAccess (from BasicBlockElements)
	3.3.11 MultiplicityDots (from AdditionalBlockConcepts)
	3.3.12 Pointer (from AdditionalBlockConcepts)
	3.3.13 ProtocolBoundary (from AdditionalBlockConcepts)
	3.3.14 ReadAccess (from BasicBlockElements)
	3.3.15 Storage (from BasicBlockElements)
	3.3.16 WriteAccess (from BasicBlockElements)

	4 Links & Literature

