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Abstract

This paper addresses architectures of concurrent request processing servers, which are typically implemented using
multitasking capabilities of an underlying operating system. Request processing servers should respond quickly to
concurrent requests of an open number of clients without wasting server resources. This paper describes a small sys-
tem of patterns for request processing servers, covering a relative wide range of architectures. Certain types of
dependencies between the patterns are identified which are important for understanding and selecting the patterns.
As the patterns deal with the conceptual architecture, they are mostly independent from programming languages
and paradigms. The examples presented in this paper show applications of typical pattern combinations which can
be found in productive servers. The pattern language is completed by a simple pattern selection guideline. The sys-
tematical compilation of server patterns, together with the guideline, can help both choosing and evaluating a server
architecture.

1 Introduction

1.1 Application Domain

The patterns discussed in this paper focus on request processing servers which offer services to an
open number of clients simultaneously.

Requests and Sessions.
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Figure 1 Clients and its corresponding servers (Block diagram legend: See figure 2)

Figure 1 presents an abstract conceptual model of the server type under consideration. For each
client, it shows a dedicated session server inside the server. Each session server represents an ab-
stract agent which exclusively handles requests of a corresponding client, holding the session-
related state in a local storage. This abstract view leaves open if a session server is implemented
by a task (process or thread) or not. A session starts with the first request of the client and repre-
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During a session, a client can
send one or many requests to the server. For each
request the server returns a response. In the follow-
ing, we will exclusively focus on protocols where
each client sends a sequence of requests and the
server reacts with a response per request.

In this context, we have to distinguish between
one-request-sessions and multiple-request-ses-
sions. In case of one-request-sessions, the “session” is
limited to the processing of only one single request,
see figure 3. This is a typical feature of “stateless”
protocols like HTTP. In contrast, a multiple-request-
session like a FTP or a SMB session spans several re-
quests, see figure 4. In this case, a session server re-
peatedly enters an idle state, keeping the session
state for subsequent request processing until it is fi-
nally removed. If the client manages the session
state, it sends the context to the server with every
request, therefore the server can be simpler as it
only has to manage single request sessions (The
KEEP SESSION DATA IN THE CLIENT pattern in [Sore(2]),
but this solution has many drawbacks. In this pa-
per, we will focus on the server's point of view of
multiple request sessions which results in the Keep
SESSION DATA IN THE SERVER pattern [Sore(02].
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Setting up Connections

If a dedicated connection between client and server (e.g. a TCP/IP connection) is used for com-
munication during a session, the first request is a connection request sent by the client to the ses-
sion controller. This request sets up the connection which can then be used to send service re-
quests and return results. To set up the connection, the server has to accept the connection re-
quest. After establishing the connection, the TCP/IP service creates a new handle (socket) to ac-
cess the new connection. The ListeNer / WoRrker pattern shows this behavior in detail.

Multitasking

To serve multiple clients simultaneously, a server is usually implemented using processes or
threads (tasks) of a given operating system. While the maximum number of concurrent clients is
open in principle, it is actually constrained by the resource limitations of the server platform.

1.2 Forces

There are some forces which are common to all patterns described in this paper:

Response time. A network server should accept connection requests almost immediately and
process requests as fast as possible. From the client's point of view, these time intervals matter:

1. Connect time (tconn): The time from sending a connection request until the connection has
been established.



2. First response time (tw.s1): The time between sending the first request and receiving the
response.

3. Next response times (tw.s+): The time between sending a subsequent request using an
established connection and receiving a response.

The connect time t.onn usually should be short, especially for interactive systems. Minimizing the
first response time t..1 is important for single-request sessions.

Limited Resources. Processes or threads, even when suspended, consume resources such as
memory, task control blocks, database or network connections. Hence, it might be necessary to
minimize the number of processes or threads.

Controlling the server. The administrator wants to shut down or restart the server without hav-
ing to care for all processes or threads belonging to the server. Usually one of them is respons-
ible for all other processes or threads of the server. This one receives the administrator's com-
mands and may need some bookkeeping of the processes or threads belonging to the server.

1.3 Pattern Form

The pattern form used in this paper follows the Canonical Form. The graphical representations
of architectural models are important parts of the solution's description. These diagrams follow
the syntax and semantics of the Fundamental Modeling Concepts', while UML diagrams [UML]
and code fragments are included as examples or hints for possible implementations. In order to
reflect the cohesion within the pattern system, pattern dependencies (as discussed below) are
explicitely identified.

1.4 Conceptual Focus of the Pattern Language

The patterns presented in this paper are not design patterns [GHJV94] in the narrow sense, i.e.
they do not suggest a certain program structure such as a set of interfaces or classes. Instead,
each pattern's solution is described as (part of) a conceptual architecture, i.e. as a dynamic system
consisting of active and passive components without implying the actual implementation in
terms of code elements written in some programming language. The resulting models mostly
focus on the “conceptual view” or “execution view” according to [HNS99], but not the “module
view” or “code view”. While this approach leaves some (design) burden for a developer, it al-
lows presenting the patterns in their wide applicability — they are not limited to a certain pro-
gramming paradigm, but in practice can be found in a variety of implementations, including
non-object oriented systems.

Because the patterns are related to a common application domain, they form a system with
strong dependencies between the patterns: A pattern language. In this paper, three basic de-
pendency types are relevant:

Independent patterns share a common application domain but address different problems.
Both can be applied within the same project.

Alternative patterns present different solutions for the same problem. Only one of the two pat-
terns can be applied, depending on which of the force(s) comes out to be the dominant one(s). In
case of such patterns, the dominant force(s) is/are identified as such and the alternative patterns
are put in contrast.

Consecutive patterns: In this case, pattern B (the consecutive pattern) can only be applied if
pattern A has already been applied/chosen, i.e. the resulting context of A is the (given) context
of B. Such patterns are described in order of applicability (A first, then B) with B explicitely ref-
erencing to A as a pre-requisite. This aids sorting out “secondary” patterns which become relev-
ant at later stages or won't be applicable at all.

1 See [KTA+02]],[KeWe03],[Tabe02],[FMC]



2 A Pattern Language for Request Processing Servers

2.1 Overview

In the following, a system of seven patterns for request processing servers is presented. Table 1
and figure 5 give an overview. The Listener /Worker describes the separation of connection re-
quest and service request processing. Then there are two alternative task usage patterns, namely
ForkiNG SErvER and Worker PooL. For the latter, two alternative job transfer patterns are present-
ed which are consecutive to the Worker PooL pattern — JoB Queue and Leaper/FoLLower. As an

additional, independent pattern, the Session ContexT MANAGER is discussed.

Pattern Name

Problem

Solution

LisTENER /
WORKER

How do you use processes or threads to
implement a server offering services for an
open number of clients concurrently?

Provide different tasks for listening to and
processing requests: One listener for connection
requests and many workers for the service
requests

FORKING SERVER

You need a simple implementation of the
Listener / Worker server. How can this ser-
ver respond to an open number of concur-
rent requests in a simple way without using
many resources?

Provide a master server listening to connection
requests. After accepting and establishing a
connection, the master server creates (forks) a
child server which reads the request from this
connection, processes the request, sends the
response and terminates. In the meantime, the
master server listens for connection requests
again.

Worker PooL

How can you implement a LisTener /
Worker server providing a short response
time?

Provide a pool of idle worker processes or threads
ready to process a request. Use a mutex or another
means to resume the next idle worker when the
listener receives a request. A worker processes a
request and becomes idle again, which means that
his task is suspended.

Worker PooL
MANAGER

How do you manage and monitor the
workers in a Worker PooL?

Provide a Worker PooL MaNaGER who creates and
terminates the workers and controls their status
using shared worker pool management data.

To save resources, the Worker Pool Manager can
adapt the number of workers to the server load.

JoB QuEuE

How do you hand over connection data
from listener to worker in a WORKER PooL
server and keep the listener latency time
low?

Provide a Jos Queue between the listener and the
idle worker. The listener pushes a new job, the
connection data, into the queue. The idle worker
next in line fetches a job from the queue, reads the
service request using the connection, processes it
and sends a response back to the client.

LeaDEr /
FoLLoweRrs

How do you hand over connection data
from listener to worker in a WORKER PooL
server using operating system processes?
How do you keep the handover time low?

Let the listener process the request himself by
changing his role to “worker” after receiving a
connection request. The idle worker next in line
becomes the new listener while the old listener
reads the request, processes it and sends a
response back to the client.

SessioN CONTEXT
MANAGER

How does a worker get the session context
data for his current request if there are mul-
tiple-request-sessions and he just processed
the request of another client?

Introduce a session context manager. Identify the
session by the connection or by a session ID sent
with the request. The session identifier is used by
the session context manager to store and retrieve
the session context as needed.

Table 1: Pattern Thumbnails
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2.2 Patterns for Request Processing Servers in Literature

For this domain, several patterns of this system have already been published in different forms.
A good source is [POSA2] — in fact, most patterns described in this paper can be found in this
book in some form. Some, like the Leaper/FoLLowErs pattern, can be found directly, others only
appear as variant (HaLr-Sync/HaLr-REacTIVE) or are mentioned as part of one pattern although
they could be considered as patterns of their own (like the THreaD PooL in LEADER / FOLLOWERS).

Apart from books, some pattern papers published for PLoP workshops cover aspects of re-
quest processing servers: The Request HANDLER pattern [VKZ02] describes what client and server
have to do to post and reply to requests in general. The Pooring [KiJa02a], Lazy AcquisitioN
[KiJa02b] and Eacer AcquisiTioN patterns describe aspects of the Worker PooL mechanisms. The
KeEp SessioN Data N ServER and SessioN Score Patterns [Sore02] are related to the Session CONTEXT
MANAGER.

2.3 The Patterns

On the following pages, we will present the patterns as described above, each pattern starting
on a new page. The guideline in section 2.4 gives hints when to choose which pattern.



Listener / Worker

Context

You want to offer services to an open number of clients using connection-oriented networking
(for example TCP/IP). You use a multitasking operating system.

Problem

How do you use tasks (processes or threads) to implement a server offering services for an open
number of clients concurrently?

Forces

e [t is important to keep the time between connection request and establishing the connection
small (connect time ten). NO connection request should be refused as long as there is any
computing capacity left on the server machine.

e For each server port there is only one network resource, a socket, available to all processes or
threads. You have to make sure that only one task has access to a server port.

Solution

Provide different tasks for listening to connection requests and processing service requests:

e One listener listens to a server port and establishes a connection to the client after receiving a
connection request.

e A worker uses the connection to the client to receive its service requests and process them.
Many workers can work in parallel, each can process a request from a client.
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2+.: service request v v v
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Figure 6 Listener / Worker pattern

Consequences

Benefits: As the listener's only task is to accept connection requests, the server is able to respond
to connection requests quickly. Therefore it doesn't matter much that there is only one listener
task per server port or even for all ports. A client sends its connection request and encounters



that the connection will be established quickly and that he is connected to a worker exclusively
listening to his request.

Liabilities: Although it is obvious that the listener has to exist with the server's start, you can
still decide when to create the workers. You can either choose the ForkiNG SErVER pattern where
the listener creates the worker on demand, that is for every connection request. Or choose the
Worker PooL pattern and create the workers in advance.

Transferring the job data (in this case, just the connection to the client) from listener to worker
must also be implemented. For this, the patterns FORKING SERVER, JoB QUEUE and LEADER / FOLLOWERS
offer three different solutions.

Response time. There are 4 time intervals to be considered for a Listener / WORKER Server:

1. Listener response time (t;): The time the listener needs after receiving a connection request
until he establishes the connection.

2. Listener latency (t;): The time the listener needs after establishing a connection until he is
again ready to listen.

3. Connection handover (t;): The time between the listener establishes the connection and the
worker is ready to receive the service request using this connection.

4. Worker response time (t;): How long it takes for the worker from receiving a request until
sending the response.

The values of t;, t, and t; are only dependent from the multitasking strategy of the server, while
t, is heavily dependent from the actual service request. All of them depend on the current server
and network load, of course. Their effect on the response time intervals from the client's point of
view (see section 1.2) is as follows: The listener needs t;+t, for each connection request, so this
sets his connection request rate and influences t.n. The connection handover time t; is impor-
tant for the first request on a new connection (t.«); subsequent requests using this connection
will be handled in t,.

Known Uses

Most request processing servers on multitasking operating system platforms use the Listener /
Worker pattern. Some examples: The inetd, HTTP/FIP/SMB servers, the R/3 application
server, database servers, etc.

Related Patterns

ForkinG SErvER and WoRrkER PooL are two alternative consecutive patterns to address creation of
the workers. Session ConteExT MaNAGER deals with the session data if workers should be able to
alternately process requests of different sessions.

The Accerror — CoNNECTOR pattern in [POSA2, p. 285] describes the separation of a server into
acceptors and service handlers. The Reactor pattern [POSA2, p. 179] is useful if one listener has
to guard more than one port.



Forking Server

Context

You implement a ListeNer / WORKER server using tasks of the operating system.

Problem

You need a simple implementation of the ListeNer / WoRkER server. How can this server respond
to an open number of concurrent requests in a simple way without using many resources?

Forces

e Each operating system task (process or thread) consumes resources like memory and CPU
cycles. Each unused and suspended task is a waste of resources.

e Transferring connection data (the newly established connection to the client) from listener to
worker can be a problem if they are implemented with operating system processes.

Solution

Provide a master server listening to connection requests. After accepting and establishing a
connection, the master server creates (forks) a child server which reads the service request from
this connection, processes the request, sends the response and terminates. In the meantime, the
master server listens for connection requests again. The forking server provides a worker task
for each client's connection.
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Figure 7 The forking server pattern

Figure 7 shows the runtime system structure of the Forking Servir. The structure variance area
(inside the dashed line) indicates that the number of Child Servers varies and that the Master
Server creates new Child Servers.

The master server task is the listener who receives connection requests from clients. He
accepts a connection request, establishes a connection and then executes a “fork” system call
which creates another task, a child server that also has access to the connection socket. While the
listener returns to wait for the next connection request, the new child server uses the connection
to receive service requests from the client. Figure 8 shows this behavior.
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Consequences

Benefits: The usage of server resources corresponds to the number of connected clients. A
FORKING SERVER's implementation is simple:

e Connection handover: As fork () copies all process's data from parent to child process, this
also includes the new connection to the client. If tasks are implemented with threads, it's
even simpler because all threads of a process share connection handles.

e An idle ForxING SERVER needs very little system resources as it creates tasks on demand only.

e The Master Server only needs to know which workers are not terminated yet — this aids in
limiting the total number of sessions (and therfore active workers) and makes shutting down
the server quite simple.

e Handling multiple request sessions is easy because a worker can keep the session context
and handle all service requests of a client exclusively until the session terminates.

Liabilities: A severe drawback of this kind of server is its response time. Creating a new task
takes some time depending on the current server load. This will increase both the listener
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latency time t, and the job handover time t;, which results in a bad connection response time and
(first) request response time. If you need a more stable response time, use the Worker Poor.

This also applies if you want to limit resource allocation and provide less workers than client
connections. In this case you need a scheduler for the workers and a context management, for
example the SessioN CONTEXT MANAGER.

Known uses

Internet Daemon. The Internet Daemon (inetd) is the prototype for the forking server which
starts handlers for many different protocol types like FTP, Telnet, CVS — see section 3.1.

Samba smbd: Using the smbd, a Unix server provides Windows networking (file and printer
shares) to clients. The Samba server forks a server process for every client.

Common Gateway Interface (CGI): An HTTP server which receives a request for a CGI pro-
gram forks a new process executing the CGI program for every request.

Related Patterns

The Worker PooL pattern offers an alternative solution, if a short response time is a critical issue.
The Session CoNTEXT MANAGER is an independent pattern which can be combined with Forking
SERVER, if a session spans multiple requests and it is not desirable to keep the according worker
task for the complete session (for example, because the session lasts several hours or days).

The THREAD-PER-REQUEST pattern in [PeS097] is very similar to the ForkiNnG SErver. The THREAD-
PER-SESSION pattern in [PeS097] describes the solution where session data is kept in the worker
task instead of using a SessioN CONTEXT MANAGER.

Example Code

while (TRUE) {
/* Wait for a connection request */
newSocket = accept (ServerSocket, ...);
pid = fork();
if ( pid == )
{
/* Child Process: worker */
process_request (NewSocket) ;
exit (0);
}
[...]
}

11



Worker Pool

Context

You implement a ListeNer / WORKER server using tasks of the operating system.

Problem

How can you implement a ListeNer / WORKER server providing a short response time?

Forces

e To minimize the listener latency time t,, you have to make sure that the listener is quickly
ready to receive new connection requests after having established a connection. Any actions
that could block the listener in this phase increase the listener latency time.

e Creating a new worker task after establishing the connection increases the connection
handover time t.

Solution

Provide a pool of idle worker tasks ready to process a request. Use a mutex or another means to
resume the next idle worker when the listener receives a request. A worker processes a request
and becomes idle again, which means that his task is suspended.
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‘ % Data
: 4 Workers worker [
listener J > v
/ processing
conn. / requests \‘
hand- 2 he
over -\

idle Wo’rker idle worker | ®¢* | idle worker

Figure 10 The Worker Pool pattern

Additionally, the strategy in choosing the next worker can be customized to gain better per-
formance. The straightforward way is using a mutex. This usually results in a FIFO order or a
random order, depending on the operating system resource in use. Another strategy could im-
plement a LIFO order to avoid paging of task contexts.

The Worker PooL pattern is a good solution if the server's response time should be minimized and
if it can be afforded to keep processes or threads “alive” in a pool between requests. In contrast
to the ForkING SERVER, this avoids creating a process or thread for every session or request, which
increases the response time.
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Consequences

Benefits:

e As the worker tasks are created in advance, the time to create a task doesn't affect the
response time anymore.

e You can limit the usage of server resources in case of a high server load. It is even possible to
provide less workers than clients.

Liabilities:

* You need a way to hand over the connection data from the listener to an existing worker.
This strategy will affect the listener latency time t, and the connection handover time t;. The
two alternatives to do so are the Jos Queue and the Leaper / FoLLowErs patterns.

e A static number of workers in the pool might be a problem for a varying server load. To
adapt the number of workers to the current server load, use a Worker PooL MANAGER.

Known Uses

Apache Web Server. All variants of the Apache HTTP server use a Worker PooL. Most of them
use a Worker PooL MaNAGER to adapt the number of workers to the server load. See section 3.2
for further details.

SAP R/3. The application server architecture of SAP R/3 contains several so-called “work pro-
cesses” which are created at a server's start-up and stay alive afterwards to process requests.
Usually there are less work processes in the pool than clients. As R/3 sessions usually span
multiple requests, the work processes use a Session CoNTEXT MANAGER. See section 3.3 for a more
detailed description.

Related Patterns

The ForkING SERVER pattern is an alternative pattern which minimizes resource consumption but
increases response time. WoRrRkeR PooL MANAGER is a consecutive pattern which provides a
manager to control the workers. The Session ConTEXT MANAGER is an independent pattern which
can be combined with Worker Pool if a session spans multiple requests. JoB Queue and LEADER /
FoLLowers are consecutive patterns which deal with the transfer of job-related data from listener
to worker.

A detailed description of a thread pool can be found in [SV96] and in the LEAaDER / FOLLOWERS
pattern in [POSA2, p. 450ff]. It is also mentioned in a variant of the Acrtive Osject pattern
[POSA2, p.393] .

The PooLing Pattern [KiJa02a] describes more general how to manage resources in a pool. The
creation of idle worker tasks at start-up is an example of Eacer Acquisition [KiJa02b].

13



Worker Pool Manager

Context

You have applied the Worker PooL pattern.

Problem

How do you manage and monitor the workers in a Worker Poor?

Forces

e At the server start, a certain number of worker tasks (processes or threads) have to be created
before the first request is received.

e To shut down the server, only one task should receive the shutdown signal which will then
tell the others to shutdown too.

e If a worker dies, he must be replaced by a new one.

e Workers consume resources, so there should be a strategy to adapt resource usage to the
server load without reducing server response time.

Solution

Provide a Worker PooL MaNAGER who creates and terminates the workers and controls their
status using shared worker pool management data.

To save resources, the Worker Pool Manager can adapt the number of workers to the server
load: If the number of idle workers is too low or no idle worker available, he creates new
workers. If the number of idle workers is too high, he terminates some idle workers.
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Figure 11 Worker Pool with manager

Figure 11 shows a Worker PooL and its manager: The worker pool manager creates all tasks in
the pool. For every task in the pool, it creates an entry in the worker pool management data.
This storage is shared by the workers in the pool. Whenever an idle worker is activated or a
worker becomes idle, it changes its state entry in the worker pool management data. The worker
pool manager can count the number of idle and busy tasks and create new tasks or terminate
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idle tasks, depending on the server load. Additionally it can observe the “sanity” of the workers.
If one doesn't show any life signs anymore or terminates because of a crash, the manager can
replace it with a new one.
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Figure 12 Interaction between Worker Pool Manager and Workers
Figure 12 shows the behavior of the worker pool manager and the workers: After creating the
workers, the worker pool manager enters the maintenance loop where he counts the number of
idle workers and terminates or creates workers, depending on the limits. The workers set their
current state information in the worker pool management data.
Don't implement the WorkerR PooL | workerPool

. : o
MaNAGER in the same task as the listener, or —
3 forki
you'll get the same problems as with the 0 ol wonert | ] ez '
fork() ..

ForkiING Server: Creating a new process
may take some time which may increase tormination
the listener latency time t2 dramatically. sianal
Figure 13 shows an example sequence
where the worker pool manager replaces a
worker which terminated unexpectedly.

worker n

fork()

worker 2'

Consequences

Benefits: The Worker Pool Manager takes
care of the workers and makes it easier to
shutdown a server in a well — defined way. _

By constantly monitoring the status of the M/"‘\/ .o
workers, he helps to increase the stability —
of the server. If he controls the number of Figure 13 Example sequence: Worker Pool Manager
workers depending on the current server creates, replaces and terminates workers
load, he helps to react to sudden changes

in the server load and still keeps resource

usage low.
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Liabilities: A worker now has to update its state entry in the worker pool management data
storage whenever he enters another phase. This storage should be a shared memory. It is impor-
tant to avoid blocking the workers while they update their state.

The Worker Pool Manager is an additional task which consumes resources as it has to run
regularly.

Known Uses

Apache Web Server. All Apache MPMs have a dedicated process for worker pool management.
Only the Windows version has a static worker pool while all other variants let the worker pool
manager adapt the number of workers in the pool to the current server load.

SAP R/3 Dispatcher. The Dispatcher in an R/3 system manages the worker pool: He starts,
shuts down and monitors the work processes and can even change their role in the system,
depending on the current server load and the kind of pending requests.

Example Code

This example code has been taken from the Apache HTTP server (see section 3.2) and adapted to
stress the main aspects of the pattern.

The child_main() code is not shown here as it depends on the job transfer strategy (Jos
QuEut or Leaper / FoLLowers). Each worker updates his state in the scoreboard as shown in figure
12.

make_child(slot) {

[...]

pid = fork();

if ( pid == )

{
/* Child Process: worker */
scoreboard[slot] .status = STARTING;
child main(slot) ;
exit (0);

}

[...]

scoreboard[i] .pid = pid;

}

manage_worker_pool () {

[...]

scoreboard = create_scoreboard() ;

/* create workers */

for (i = 0 ; 1 < to_start ; ++i ) {
make child(1i);

}

for (i = to_start ; i1 < limit ; ++i ) {
scoreboard[i] .status = DEAD;

}

/* Control Loop */
while (!shutdown) {
/* wait for termination signal or let some time pass */
pid = wait_or_timeout () ;
if ( pid !'= 0 ) {
/* replace dead worker */
slot = £ind_child_by pid(pid);
make child(slot);
}
else {
/* check number of workers */
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idle_count = 0;

for (1 = 0 ; 1 < limit ; ++1i ) {

if (scoreboard[i].status == IDLE)

{
idle_count++;
to_kill = 1i;

}

if (scoreboard[i].status == DEAD)
free_slot = i;

}
if (idle_count < min_idle) {
make child(free_slot);
}
if (idle_count > max_idle) {
kill (scoreboard[to_kill] .pid);
scoreboard[to_kill].status = DEAD;
}
}
} /* while(!shutdown) */

/* Terminate server */
for (1 = 0 ; 1 < 1limit ; ++1i ) {
if (scoreboard[i].status != DEAD)
kill (scoreboard[i] .pid) ;
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Job Queue

Context

You have applied the Worker PooL pattern to implement a LisTeENER / WORKER server.

Problem
How do you hand over connection data from listener to worker in a Worker PooL server and
keep the listener latency time low?

Forces

e To decrease the listener latency time t,, the listener should not have to wait for a worker to
fetch a new job. This happens when the listener has just established a connection to the client
and needs to hand over the connection data to a worker.

Solution

Provide a Jos QUEUE between the listener and the idle worker. The listener pushes a new job, the
connection data, into the queue. The idle worker next in line fetches a job from the queue, reads
the service request using the connection, processes it and sends a response back to the client.
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Figure 14 The job queue pattern

One or many listeners have access to the network sockets, either one listener per socket or one
for all, as shown in figure 14. Instead of creating a worker task (like the Forking Server), he puts
the connection data into the job queue and waits for the next connection request, see figure 15.
All idle workers wait for a job in the queue. The first one to fetch a job waits for and processes
service requests on that connection. After that, he becomes idle again and waits for his next job
in the queue.
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Figure 15 Behavior of Listener and Worker using a job queue

Consequences

Benefits: The listener just has to push a job into a queue and then return to listen again. The
listener latency time t; is therefore low.

Liabilities: The job handover time t; is not optimal as the operating system has to switch tasks
between listener, worker and queue mutex. When using operating system processes, the Jos
QUuEUE is not applicable, as there is no way to transfer a socket file descriptor (corresponding to
the connection to the client) between two processes. In both cases, use the Leaper / FoLLOWERS
pattern.

Known Uses

Apache Web Server. The Windows version (since Apache 1.3) and the WinNT MPM implement
the JoB Queut with a fix number of worker threads. The worker MPM uses a Jos QUeuE on thread
level (inside each process) while the processes concurrently apply for the server sockets using a
mutex (section 3.2).

SAP R/3. On each application server of an R/3 system, requests are placed into a queue. These
requests are removed from the queue by the “work proceses” for job processing, see section 3.3.

Related Patterns

Jos QuEUE is applicable as consecutive pattern to the Worker PooL pattern. LEADer / FoLLowers is an
alternative pattern which does not introduce a queue and avoids the transfer of job-related data
between tasks.

The Harr-Sync / Harr Reactive pattern in [POSA2, p.440] describes the mechanism to de-
couple the listener (asynchronous service, reacting to network events) from the workers
(synchronous services) using a message queue combined with the thread pool variant of the
Acrtive Osject pattern [POSA2, p. 393]. A description of the Tureap PooL with Jos QUEUE can be
found in [SV96], including an evaluation of some implementation variants (C, C++ and
CORBA).

Example Code

This example only shows the code executed in the listener and worker threads. The creation of
the threads and the queue is not shown here.

The job queue transports the file descriptor of the connection socket to the workers and servers
as a means to select the next worker.
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Listener Thread:
while (TRUE) {

}

[...]

/* wait for connection request */
NewSocket = accept (ServerSocket, ...);
/* put job into job queue */
queue_push (job_gueue, NewSocket) ;

Worker Thread:
while (TRUE) {

/* 1dle worker: wait for job */
scoreboard[myslot] .status = IDLE;
[...]

ConnSocket = gqueue_pop (job_gueue) ;

/* worker: process request */

scoreboard[myslot] .status = BUSY;
process_request (ConnSocket) ;
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Leader / Followers

Context

You have applied the Worker PooL pattern to implement a LisTeENER / WORKER server.

Problem
How do you hand over connection data from listener to worker in a Worker PooL server using
operating system processes? How do you keep the handover time low?

Forces

e To access a new connection to the client, a task has to use a file descriptor which is bound to
the process. It is not possible to transfer a file descriptor between processes.

¢ Switching tasks (processes or threads) between listener and worker increases the connection
handover time t.

Solution

Let the listener process the service request himself by changing his role to “worker” after receiv-
ing a connection request. The idle worker next in line becomes the new listener while the old lis-
tener reads the service request, processes it and sends a response back to the client.
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Figure 16 The Leader / Followers pattern

All tasks in the worker pool transmute from listener to worker to idle worker eliminating the
need for a job queue: Using a mutex, the idle workers (the followers) try to become the listener
(the leader). After receiving a connection request, the listener establishes the connection, releases

21



the mutex and becomes a worker processing the service request he then receives. Afterwards, he
becomes an idle worker and tries to get the mutex to become the leader again. Hence, there is no
need to transport information about the connection as the listener transmutes into a worker task
keeping this information.

Figure 16 shows the structure: The processes or threads in the Worker PooL have 3 different
states: worker, idle worker and listener. The listener is the one to react to connection requests,
while workers and idle workers process service requests or wait for new jobs, respectively.

The corresponding dynamics are shown in figure 17. Initially, all tasks of the pool are idle
workers. Listener selection is done by a task acquiring the mutex which is released as soon as
the listener changes his role to become a worker.
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Figure 17 Behavior of the tasks in the Leader / Followers pattern

Consequences

Benefits: The listener changes his role by just executing the worker's code. This keeps the con-
nection handover time t; very low as every information remains in this task. As file descriptors
needed to get access to the connection to the clients don't leave the task, the LEaper /FoLLOWERS
pattern enables the use of operating system processes to implement the Worker PooL pattern.

Liabilities: The election of the next listener is handled via a mutex or a similar mechanism. This
requires a task switch and leads to a non-optimal listener latency time t,. The LEaDER / FOLLOWERS
pattern avoids transferring job-related data, but introduces the problem of dynamically chang-
ing a process' or thread's role; for example, the server sockets must be accessible to all workers to
allow each of them to be the listener. Both listener and worker functionality must be implement-
ed inside one task.

Known Uses

Apache Web Server. A very prominent user of LEaper / FoLLowErs pattern is the preforking vari-
ant of the Apache HTTP server (see section 3.2).
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Call center. In a customer support center, an employee has to respond to support requests of
customers. The customer's call will be received by the next available employee.

Taxi stands. Taxis form a queue at an airport or a train station. The taxi at the top of the queue
gets the next customers while the others have to wait.

Related Patterns

Leaper / FoLLowers is applicable as consecutive pattern to the Worker PooL pattern. Jos QUEUE is an
alternative pattern which uses a queue for job transfer between tasks with static roles.
The Leaper / FoLLowers pattern has originally been described in [POSAZ2], p. 447.

Example code:

while (1) {
/* Become idle worker */
scoreboard[myslot] .status = IDLE;
[...]
acquire_mutex (accept_mutex) ;
/* Got mutex! Now I'm Listener! */
scoreboard[myslot] .status = LISTENING;
newSocket = accept (ServerSocket, ...);
[...]
/* Become worker ... */
release mutex (accept_mutex) ;
/* ... and process request */
scoreboard[myslot].status = BUSY;
process_request (NewSocket) ;
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Session Context Manager

Context

You implement a ListeNer / WORKER server for multiple-request sessions.

Problem

If a worker processes service requests from different clients and a session can contain multiple
requests, how does a worker get the session context data for his current service request?

Forces

Keeping session context data within a worker can be a problem:

e If a worker task is assigned exclusively for one session, it is unnable to handle requests from
other clients. This is usually a waste of resources and interferes with limiting the number of
workers.

® You have to consider that the connection to the client may be interrupted during the session
without terminating the session. The same applies to the worker task which can die unex-
pectedly. Therefore you might need to save and resume a session state.

Solution

Introduce a session context manager. Identify the session by the connection or by a session ID sent
with the request. The session identifier is used by the session context manager to store and
retrieve the session context as needed.
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Figure 18 Session Context Manager (Central Manager Variant).
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This is a specialized variant of the MemenTto pattern [GHJV94] . Figure 18 shows a solution
using a central session context manager: Each worker has a local storage for a session context.
Before he processes a request, he asks the context manager to retrieve the session context corre-
sponding to the client's session using the session ID extracted from the request. After processing
the request, he asks the context manager to store the altered session context. In case of a new ses-
sion, he has to create a new session context and assign a session ID to it. In case of the last re-
quest of a session, the worker has to delete the session context. The session context shaded grey
in figure 18 belongs to the grey client. The grey worker currently processes a request of this
client and works on a copy of its session context.

Figure 19 shows how to extend the behavior of the worker to support session context man-
agement. An example sequence is shown in figure 20.
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Figure 20 Example sequence for session context
Figure 19 Session Context Management in the management
worker loop

Variants. Central Session Context Manager: There is a single context manager for all tasks. If, for
example, the session is bound to the connection, the listener not only reacts to connection re-
quests but also to requests on open connections. The functionality of the session context man-
ager can then be included in the listener.

Local Session Context Manager: Each worker manages the sessions and the session list. The
functionality of the session context manager in figure 18 is then included in every worker task.
The storage for the session contexts is shared between all workers.

Consequences
Benefits.

e Any worker can process a request in its session context. This enables an efficient usage of
workers, especially in a Worker PooL server.

e If the session ID is sent with every request, the connection can be interrupted during the
session. This is useful for long sessions (from a few minutes to several days).

e Using a dedicated context manager helps separating the request-related and context-related
aspects of request processing. For each request to be processed, session context management
requires a sequence of (1) retrieving (creating) a session context, (2) job processing and (3)
saving (deleting) the context.
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Liabilities.
e A garbage collection strategy might be needed to remove session contexts of “orphan” ses-

sions.
e Session context storage and retrieval increases the response time.

Known Uses

SAP R/3. Each application server of an SAP R/3 system contains workers, each of them having
its own local session context manager (the so-called taskhandler, see section 3.3).

CORBA portable object adapter. CORBA-based servers can use objects (not tasks) as workers
similar to a Worker Pool. In such configurations the so-called object adapters play the role of ses-
sion context managers, see section 3.4.

CGI applications. An HTTP server starts a new CGI program for every request, like the Forking
Server. The CGI program extracts the session ID from the request (for example by reading a
cookie) and then gets the session context from a file or database.

Related Patterns

The pattern is consecutive to FORKING SERVER or WoRkER PooL. To realize access to session contexts
of workers, the Memento pattern [GHJV94] could be used. In case of local context management,
TempLatE MeTHOD [GHJV94] could be applied to enforce the retrieve-process-save sequence for
each request. The Keepr Session Data 1IN SERVER and Session Scope Patterns [Sore02] describe session
management in a more general context.
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2.4 Guideline for Choosing an Architecture

In the following, a simple guideline for selecting patterns from the pattern system is presented.
It helps deriving a server architecture by choosing a pattern combination appropriate for the in-
tended server usage. The guideline presents the patterns according to their dependencies and
fosters pattern selection by questions aiming at dominant forces.

1. Clarify the basic context for LisTENER / WORKER.

Is the server's type a request processing server or a different one, e.g. a streaming server?
Should threads or processes provided by the operating system be used, including IPC
mechanisms? If not, the pattern system might be not appropriate.

Does a session span multiple requests? Then consider 4.

2. Select the task usage pattern.

Is saving resources more important than minimizing the response time? If yes, choose a Forkin
SErvER. If not, apply the Worker PooL pattern instead.

3. When using a Worker Poot,

Choose a Job Transfer pattern. Is transferring job data between tasks easier than changing
their role? If yes, introduce a Jos Qutuk. If not, apply the Leaper/FoLLOWER pattern.

Does the number of concurrent requests vary in a wide range? Then use a dynamic pool
instead of a static pool. In this case the Worker PooL MaNacer dynamically adapts the
number of workers to the server load.

Choose a strategy to select the next worker task from the idle worker set: FIFO, LIFO,
priority-based, indetermined.

4. If a session spans multiple requests:

Does the number of concurrent sessions or their duration allow to keep a worker task
exclusively for the session? If not, introduce a SessioN CONTEXT MANAGER.

Can the listener retrieve the session ID of a client's request? Then choose central context
management, else local.

The following table shows that the possible pattern combinations yield six basic architecture

types:
without SessioN CONTEXT with SessioN CoNTEXT M ANAGER
MANAGER
FORKING SERVER Type 1 Type 2
inetd, samba server, CGI CGI applications
WORKER | JoB QUEUE Type 3 Type 4
PooL Apache (Win32, Worker) SAPR/3
LeaDer/FOLLOWER Type 5
Apache (Preforking) Type 6

Table 2 Architectures covered by the pattern system
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3 Example Applications

3.1 Internet Daemon

The Internet Daemon (inetd) is a typical representative of the Forkinc Server without Session
CoNTexT MANAGER (Type 1).

Client Client

0F a
Sockets
TCP/IP Communication Service
'

O3
2 R

! |
I Child |—T——1f
Master [ | Server 1 f—01p ]
config Server :j | Files
(inetd) | |
' chid 4
|\ Servern L] A
. // \_/

Figure 21 The inetd — a typical Forkine SERVER

Figure 21 shows the structure of the inetd server: It waits for requests on a set of TCP ports
defined in the configuration file /etc/inetd. conf. Whenever it receives a connection request,
it starts the server program defined for this port in the configuration file which handles the re-
quest(s) of this connection. The inetd starts a server program by the fork() - exec() se-
quence which creates a new process and then loads the server program into the process. The file
descriptor table is the only data which won't be deleted by exec (). A server program to be
started by the inetd must therefore use the first file descriptor entry (#0) to access the connection
socket.

3.2 Apache HTTP Server

The Apache HTTP server [Apache] is a typical request processing server which has been ported
to many platforms. The early versions use the preforking server strategy as described below.
Since version 1.3, Apache supports the Windows™ platform using threads which forced another
server strategy (Jop QUEUE).

Apache 2 now offers a variety of server strategies called MPMs (Multi-Processing Modules)
which adapts Apache to the multitasking capabilities of the platform and may offer different
server strategies on one platform. The most interesting MPMs are:

e Preforking (Type 5):
Leaper / FoLLowErs using processes with dynamic worker pool management. The promotion
of the followers is done with a mutex (results in a FIFO order).

e WinNT (Type 3):
JoB QUEUE using a static thread pool.

e Worker MPM (Type 3 on thread level):
Each process provides a Jos QUEUE using a static thread pool. The process pool is dynamically
adapted to the server load by a Worker PooL MaNAGER (Master Server). The listener threads of
the processes use a mutex to become listener. (see section 3.2)

All MPMs use a Worker PooL with processes or threads or even nest a thread pool in each pro-
cess of a process pool. They separate the listener from the Worker PooL MaNaGer. A so-called
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Scoreboard is used to note the state of each worker task. Most Worker Pool managers adapt the
number of worker tasks to the current server load.

A detailed description of the Apache MPMs and of their implementation can be found in the
Apache Modeling Project [AMP].

The Preforking MPM of Apache

Since its early versions in 1995, Apache uses the so-called Preforking strategy — a LEeaDEr /
FoLLowErs pattern. A master server starts (forks) a set of child server processes doing the actual
server tasks: listen for connection requests, process service requests. The master server is respon-
sible for adjusting the number of child servers to the server load by assuring that the number of
idle child servers will remain within a given interval.
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Figure 22 The Apache server using the Preforking MPM

Figure 22 shows the conceptual architecture of a preforking Apache server. At the top we see
the clients, usually web browsers, sending HTTP requests via a TCP connection. HTTP is a state-
less protocol, therefore there's no need to keep a session context. At the right-hand side we see
the data to be served: Documents to be sent to the client or scripts to be executed which produce
data to be sent to the client. The Scoreboard at the bottom keeps the Worker Pool management
data as mentioned in the Worker PooL pattern.

The master server is not involved in listening or request processing. Instead, he creates, con-
trols and terminates the child server processes and reacts to the commands of the administrator
(the agent at the left side). The master server also processes the configuration files and compiles
the configuration data. Whenever he creates a child server process, the new process gets a copy
of this configuration data. After the adminstrator has changed a configuration file, he has to ad-
vise the master server to re-read the configuration and replace the existing child servers with
new ones including a copy of the new configuation data. It is possible to do this without inter-
rupting busy child servers: The master server just terminates idle child servers and increments
the generation number in the scoreboard. As every child server has an entry including its gene-

29



ration in the scoreboard, it checks after each request if its generation is equal to the current gene-
ration and terminates otherwise.

The child servers use a mutex to assign the next listener, according to the LEaDEr / FoLLOWERs
pattern. In contrast to figure 16, the different roles of the workers in the pool are not shown.

The Worker MPM of Apache

Figure 23 shows the system structure of the Apache HTTP server using the worker MPM. The
center shows multiple child server processes which all have an identical structure. They are the
tasks of the Worker PooL on process level, like in the preforking MPM. Inside each Child Server
Process we find an extended Jos QUEUE structure: A listener thread waits for connection requests
and supplies a job queue. (Idle) worker threads wait for new jobs. The idle worker queue signals
to the listener if there is an idle worker ready to process the next job. If there is none, the listener
doesn't apply to the accept mutex.
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Figure 23 The Apache server using the Worker MPM
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The child_main thread creates the listener and worker threads by creating the starter thread
(which terminates after setting up listener, workers and the queues) and after that just waits for
a termination token on the 'pipe of death'. This results in setting the “exit flag” which is being
read by all threads.

Only one process' listener gets access to the server sockets. This is done by applying for the
accept mutex. In contrast to the Leaper / FoLLowErs pattern, the listener task doesn't change his
role and processes the request. Instead, he checks if there is another idle worker waiting and ap-
plies for the accept mutex again.
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3.3 SAPR/3

SAP's System R/3 [SAP94] is a scalable ERP system with an overall three tier architecture as
shown in figure 24. The diagram also shows the inner architecture of an R/3 application server.
(In practice, R/3 installations often include additional applications servers — these are omitted
here for simplicity reasons.) The application server can be categorized as a Type 4 server (cp.
Table 2), because three of the patterns discussed above are actually applied.
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Figure 24 SAP R/3 Application Server Architecture

The server's basic architecture is designed after the Worker PooL pattern. The so-called dis-
patcher (a process) plays the role of the listener and forwards requests (sent by the “SAP GUI”
clients) to worker tasks called “dialog work processes”. (There are further types of work pro-
cesses, but these are of no interest here.)

Beside other purposes, the request queue is used for forwarding requests from the dispatcher
to the work processes, i.e. it represents a Jos Queue. While the work processes read request data
from the queue by themselves, initial worker selection is actually done by the dispatcher.

Because an R/3 session (called a transaction in SAP's terms) spans multiple requests, a local
SessioN CoNTEXT MANAGER called taskhandler is included in each work process. Before a request can
be processed by the DYNP processor and the ABAP processor, the taskhandler retreives the ap-
propriate context from the roll out area (or creates a new one) and stores it in the work process'
roll area. Afterwards, the taskhandler saves the context to the roll out area (at session end, it
would be deleted).

3.4 Related Applications at Object Level

All of the above patterns have been discussed under the assumption of processes or threads be-
ing the building blocks for server implementations. However, some of the patterns are even ap-
plicable if we look at a system at the level of objects instead of tasks. When realizing a server's re-
quest processing capabilities by a set of objects, these objects can be “pooled” similar to a WorkEer
PooL. Instead of creating objects for the duration of a session or a single request, “worker ob-
jects” are kept in a pool and activated on demand. This helps controlling resource consumption
and avoids (potentially) expensive operations for creating or deleting objects.
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For example, this idea has been put into practice with Sun's J2EE server architecture [J2EE].
Here, the “stateless session beans” are kept in a pool while the so-called “container” plays the
listener role, activating beans on demand and forwarding requests to them.

Another example are the so-called “servants” from the CORBA 3.0 portable object adapter
specification [CORBA]. These are server-side worker objects which can also be kept in a pool
managed by the “object adapter” (if the right “server retention policy” has been chosen, see the
POA section in [CORBA]). The object adapter (in cooperation with an optional “servant man-
ager”) does not only play the listener role — it also acts as Session CoNTEXT MANAGER for the ser-
vants.

4 Conclusion and Further Research

Design patterns in the narrow sense are often discussed in a pure object-oriented context. Hence,
they often present object-oriented code structures as solution, typically classes, interfaces or
fragments of methods. In contrast, the patterns presented in this paper are conceptual patterns
which deliberately leave open most of the coding problem. This initially seems to be a draw-
back, but it also widens the applicability of a pattern and increases the possibility to identify a
pattern within a given system. In fact, most of the industrial applications (known uses) ex-
amined in this paper are not implemented with an object-oriented language (although some OO
concepts can be found). Furthermore, central ideas and topics (e.g. scheduling, task and session
management) behind the patterns have already been described in the literature about transac-
tion processing systems [GrRe93].

Designing a good code structure is often a secondary problem with additional forces such as
given languages, frameworks or legacy code. In order to remain “paradigm-neutral”, conceptu-
al architecture patterns should be presented using appropriate notations like FMC. Object-Ori-
ented implementation of conceptual architecture models is an important research topic in this
context [TaGr03].

The integrated description of pattern systems has been developed together with the pattern
system presented here. Further research is necessary to prove that this is applicable to pattern
systems in general. This approach, backed by corresponding guidelines, may support software
architects in applying patterns.
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