
Architectural Description with Integrated
Data Consistency Models

Peter Tabeling
Hasso-Plattner-Institute for Software Systems Engineering

P.O. Box 90 04 60, 14440 Potsdam, Germany
tabeling@hpi.uni-potsdam.de

Abstract descriptions from which design and implementation should
The focus of typical architectural models is the descrip-
tion of large systems. Even though these systems are usu-
ally distributed, aspects of distributed systems are only
addressed in a rudimentary way. While typical approaches
pay attention to technical issues like deployment, data con-
sistency problems are mostly ignored. This paper presents
a modeling approach which integrates assumptions about
data consistency into architectural models. The concepts of
abstract locations and operations play a central role in this
context. They allow transactions and snapshots to be
implicitely defined by mapping high-level architectural
models to low-level models. The decision about the appli-
cation of transactional techniques and snapshot algorithms
can then be based on architectural models. Furthermore,
the approach can be integrated into programming lan-
guages and platforms. In this case, a runtime environment
could automatically detect and process both transactions
and snapshots.

Keywords: Software Architecture, Data Consistency,
Transaction, Snapshot, Fundamental Modeling Concepts,
FMC, STAGE.

1. Introduction

Architecture oriented methods of describing software
systems generally aim at „large“ systems. Beside being het-
erogenous and complex, such systems are often distributed
in some form, e.g. they heavily rely on the multitasking
capabilities of the underlying operating system(s) or they
are even deployed on a physically distributed hardware
platform.

Therefore, an architecture description method should be
capable of addressing typical, inherent features of distrib-
uted systems. In particular, this applies to architecture

be derived in a systematic way, by following defined rules.

1.1. Data Inconsistency in Distributed Systems

A typical feature of distributed systems is the need to
deal with various types of „inconsistency“. For example,
transactional concepts must be implemented to avoid gen-
erating or accessing „inconsistent data“. Another problem
is the limited possibility to observe a „consistent global
state“. In this context, two basic types of inconsistency
should be distinguished:

• Shared data inconsistency
Conflicting accesses (reading, writing, modifying) to
shared data by concurrently operating components is a
common problem, because these accesses are usually
implemented by sets of lower-level accesses. When
scheduling these accesses, certain rules must be obeyed
in order to avoid „dirty reads“, „unrepeatable reads“ or
„lost updates“. Well-known solutions are given, rang-
ing from simple locks to various types of transactions
[1][2][3]. 

• Distributed data inconsistency
A nondistributed sequential system can be modeled as
a state machine, relying on the idea of a defined global
system state, being observable by the system itself.
According to Petri [4], this idea is a questionable
assumption if we deal with concurrent, distributed sys-
tems. A distributed system shows non-neglectable,
rarely predictable latencies when reading „remote“
data. This, in combination with concurrent data
changes at different locations, makes it impossible to
reliably observe the system‘s global state [5] - only
„local“ state can be observed. Again, solutions have
been found to address this problem, at least partially.
For example, snapshot algorithms allow causal consis-
tent observation of the system state [6][7].



1.2. Typical Focus of Architecture Descriptions

When „software architecture“ and architecture descrip-
tion languages started to be research topics, their main
focus soon became clear. As survey papers show, they are
aimed at capturing the high-level view(s) of a large system,
typically as a structure of „components“ and „connectors“
[8][9][10]. Further typical research topics in the field of
software architecture are reference architectures, architec-
tural styles and architectures for product lines.

However, in case of distributed systems, only „techni-
cal“ aspects are addressed by architecture oriented descrip-
tions. For example, „deployment diagrams“, as defined in
UML [11][12], allow to define hardware nodes as installa-
tion targets of „components“ (e.g. database tables, libraries,
executables etc.). The „code view“ from [13][14] has a
similar focus while the „execution view“ describes the use
of processes and other ressources of the (software) plat-
form.

1.3. Open Questions

While deployment and the use of processes are impor-
tant aspects of distributed systems, data consistency
aspects, as described in section 1.1., are rarely addressed by
architectural models.

For example, there is not enough information to decide
which (part of a) data structure (e.g. a set of shared memory
cells) must be accessed in a transactional manner (e.g. by
applying locking mechanisms). Answering this question
requires explicit information about which data elements
form such a data structure, and, if conflicting accesses to it
are actually possible.

Another problem is setting a transaction‘s boundary (or
identifying a critical section), i.e. to combine the „right“ set
of accesses to a data structure in order to be scheduled ade-
quately. Obviously, information is required for grouping
accesses.

As already mentioned, the general possibility to observe
the „global“ state of a system must not be assumed in case
of distributed systems. Reliable state observation is limited
to „local data“ while reading „distributed data“ generally
results in a „snapshot“ reflecting a state which has possibly
never been valid. The latter case is often tolerable, but
sometimes causal consistency is required, at least. In this
context, some means are neccessary to distinguish between
„local“ and „distributed“ data, and, to define the required
type of consistency of observed data.

In general, a description method seems desirable which
covers data consistency constraints as an integrated aspect
of architectural models.

2. Binding Consistency Constraints to Archi-
tectural Models

The modeling approach presented in the following pri-
marily aims at the conceptual view of a system‘s architec-
ture. At this level, it allows to describe the „conceptual
distribution“ of the system as a structure of abstract active
components and abstract locations. These locations repre-
sent passive system components which allow the active
components to exchange and store data. Additional archi-
tectural models describe the mapping of these components
to lower-level components and the refinement of high-level
operations at lower levels. Because certain consistency
constraints generally apply to the different elements of a
model, the models and their interdependencies carry the
information to answer the questions from section 1.3..

The approach discussed here is based on the Fundamen-
tal Modeling Concepts (FMC) [15][16][17], with several
extensions to address model mapping and consistency
aspects [20][21][22].

2.1. Basic Architectural Structures

As a very basic idea, FMC supports the description of
three elementary types of structures within each architec-
tural model:

• Compositional structure
This reflects the (mostly) static structure of the system,
consisting of active and passive components, called
agents and locations.

• Behavioral structure
Describes the behavior of the agents and the observable
dynamics caused by it.

• Value structures
All locations in the compositional structure carry data
items. A data item can be a simple, unstructured value
or a structured value, like an array, a tree or even a
database.

FMC offers three distinguished diagram types, one for
each of these structures. These diagrams rely on a semifor-
mal notation, being optimized for intuitive understanding
by human readers. In the context of this paper, the concepts
behind these diagrams and the relationships between them
are more important than the notation itself. (Readers inter-
ested in the notation should refer to [15] and [17] for the
details.)

With respect to the questions in the introduction, the ele-
ments of compositional structures and behavioral struc-
tures are the most important ones. Hence, they are dealt
with in more detail below.



2.2. Compositional Structure Elements

On the background of software systems, architecture is
typically seen as a high-level view of the system, repre-
sented as a structure of „components“ and „connectors“.
While components primarily perform the required process-
ing, connectors may simply transport, filter or transform
messages, and they can mediate between components or
even control their interaction.

From this point of view, all parts of a system are active
in some way. There seem to be no explicit elements for sim-
ply carrying state, i.e. containing data. Szyperski even
defines components as system parts without “externally
observable state“ [18]. State and the corresponding data
storages are often treated as implementation details of com-
ponents, accessible only indirectly via interfaces.

At first sight, hiding data storages behind interfaces
seems to be a good or even mandatory way to foster infor-
mation hiding. However, data storages must be explicit
parts of a model if we want to discuss data accesses, obser-
vation and consistency.

Compositional structures, as described in FMC, contain
data storages at all levels of abstraction. In general, a com-
positional structure consists of agents and locations.
Agents are active components which perform all data pro-
cessing and transport. At a higher level, an agent can be a
purely conceptual component providing a required func-
tionality. At lower levels, an agent can be an object, a pro-
cess or even a hardware component. An agent is not limited
to purely sequential behavior (as, for example “active
objects” [19]) but can also perform multiple concurrent
activities.

Agents are never connected directly, but via storages or
channels, which are passive components of a composi-
tional structure. Storages and channels are called locations
because they represent physical or conceptual „places“
where data can be stored or exchanged. A non-shared stor-
age is used by only one agent to hold some state, while
shared storages (which are connected to different agents)
can also be used for communication. Like an agent, a stor-
age can be purely conceptual - in this case, it only repre-
sents an abstract container for an also abstract data value.
Only at lower level models, a storages‘ implementation in
terms of „technical“ storages (like files, a set of memory
cells, etc.) is revealed. This approach allows to reason
about data accesses and consistency in high-level architec-
tural models (see sections 2.4. and 2.5.) without sacrifying
the idea of information hiding.

Channels, in contrast to storages, lack the ability to carry
(non-transient) state. They can only be used by agents for
communication purposes. Agents can output messages (i.e.
transient data) to channels which can, but need not, be
received by another agent. If the message is not read by an

agent waiting for it, it is lost and the channel becomes
„empty“. Again, channels can be purely conceptual or rep-
resent low-level components.

Each agent has one or more ports, which define the pos-
sible connections to locations. Depending on the number of
ports, an agent can be connected to any number of loca-
tions. In a similar way, locations can be connected to any
number of agents (i.e. their ports), but locations do not have
ports.

Figure 1 shows a simple example of a compositional
structure with three agents (a1,a2 and a3), three storages
(s1,s2 and s3) and three channels (c1,c2 and c3).1

2.3. Behavioral Structure Elements

Corresponding to the clear distinction between active
and passive components of the compositional structure (see
section 2.2.), we distinguish between activities and their
effects.

Each activity consists of elementary activities, called
operations. When performing an operation an agent
assigns a new value (the operation result) to a certain loca-
tion (the operation target). This value is derived from val-
ues which are read by the agent from one or more locations.
In this way, every agent performs a sequence of operations
for each location it uses as output location or state storage.
In case of the operation target being a storage, the opera-
tion’s result is the new state of the storage. In case of a
channel, the operation’s result is the message being sent.

The elementary effects of operations that can be
observed at locations are called events. An event is a value
change taking place at a certain location and a certain point
in time. (A value change may also take time - in this case,
the “value” “undefined” is given in a time interval, which
implies that two events are observable.) This implies that,

1. Storages and channels are always depicted with large and
small rounded nodes. Arrow directions indicate if an agent
can read or write a location (or both). For simplicity rea-
sons, ports are not shown grafically.

a1
s1

s2

c1

a2

a3

s3
c2 c3

Figure 1. Compositional Structure - Example



at a single location, there will always be a sequence of
events. Of course it is still possible that separate values
within a data structure change simultaneously at a single
location. Nevertheless, these changes are not to be seen as
independent events but as “parts” of one single event. An
event is not only outcome of an operation but may also be
a trigger for an operation, i.e. an agent can wait for a certain
event (or multiple, simultaneous events) before it performs
an operation. Such a triggering event can be a certain value
change at a shared storage or the arrival of a message at an
input channel, for example.

2.4. Data Access, Observation and Consistency

Compositional structure and behavioral structure in
combination provide the basis for reasoning about data
access and consistency. Locations as explicit elements of a
model allow to discuss where data is being observed or pro-
duced during system activity.

Hence, an access can be defined as follows: For each
operation an agent performs and for each location which is
observed or affected during that operation, there is exactly
one access. An access can be a reading, writing1 or modi-
fying access.

Depending on the type, accesses (to the same location)
may overlap or not. A stand-alone read access may overlap
with another stand-alone read access and a stand-alone read
access may overlap with a read access being part of a mod-
ifying access. All other combinations may not overlap and
must be temporally ordered.

Figure 2 illustrates an example operation where agent a1
from Figure 1 performs the operation: s1 := s1+s2. It is
assumed that the storages s1 and s2 contain two-dimen-
sional vectors, whose time-dependent values are shown in
the diagram. The operation is triggered by a request (“add”)
being sent by agent a2 via channel c1. Agent a2 also pro-
vides the values of s1 and s2 before triggering the opera-
tion. During that operation, agent a1 performs three
accesses, namely two read accesses (Rc1 and Rs2) and a
modifying access (Ms1) - the latter being a combination of
a read (Rs1) and a write access (Ws1).

As discussed in the introduction, behavioral modeling of
distributed systems should not rely on the assumption of an
observable „global“ state. Instead, observability of state
may only be assumed for „local“ state. The modeling
approach presented here takes these ideas into account (see
[20] and [22] for a detailed discussion).

The definition of accesses reflects the idea that data at a
location can be changed „in one single action“ and

observed „at a single glance“, which resembles our intui-
tive understanding of „being located at one place“. In gen-
eral, read accesses to a location are considered to guarantee
temporal consistency:

A sequence of read accesses to a location yields a
sequence of observed data. This observation is temporal
consistent, i.e. it does not contradict the real sequence of
values at the observed location, i.e. the order in which
these values have been generated.

However, temporal consistent observation is only guar-
anteed for data at one location, i.e. „local state“ can now be
defined as data being held at one location (storage or chan-
nel).

As an intended consequence, data being read from dif-
ferent locations may be a temporal inconsistent observa-
tion. This is also true for data which is read during one
operation, because each agent must be considered as an
internal observer of the system. However, an operation - as
an elementary activity - should at least guarantee causal
consistency:

Data being read from different locations during one
operation represents a causal consistent observation, i.e.
the observed values do not contradict their causal depen-
dencies. If an operation is triggered by a set of simulta-
neous (i.e. simultaneously observed) events, these events
must be causally unrelated.

While this requirement is based on „consistent snap-
shots“ as described in [6] and [7], the additional constraint
regarding triggering events actually makes it stronger.

It should be pointed out that temporal and causal consis-
tency are implicit assumptions about all abstract opera-
tions. Of course, they may require additional effort at the
implementation level (see section 2.6.).

2.5. Model Mapping and Implementation Depen-
dency

The example shown in Figure 1 and Figure 2 models an
idealized, high-level system view where the implementa-

1. Producing a message at a channel can be seen as a special
type of write access, which includes a second, implicit
access for resetting the channel to the “empty” state.

s2

s1

c1 add

time

(1,5)

(2,4)

(2,1)

value change (interval)

channel "empty"

event

(4,5)

Rs2

Rc1

Rs1 Ws1

Ms1

Figure 2. Accesses to Locations (High Level)



tion of the vector data type (i.e. the realization of the vector
storages and the add operation) is not visible. At a lower
level, each of the vector storages s1 and s2 may be imple-
mented by two storages for the vector components, {s1.x,
s1.y} and {s2.x, s2.y}, respectively - see Figure 3. (For
simplicity reasons, components a3, c2, c3 and s3 have been
omitted.)

On the other hand, the abstract add operation might be
implemented by the following operation sequence:
(1) s1.x := s1.x + s2.x
(2) s1.y := s1.y + s2.y

In general, a lower-level model contains elements which
are implementations of corresponding elements of the
higher-level model, i.e. locations are implemented by loca-
tions, operations by operations, and agents by agents. (This
dependency can be seen as a generalization of Hoare’s
„abstraction function“ [23].)

In most practical cases, this implementation dependency
(see [20] for details) is a static one-to-many mapping of
higher-level elements to lower-level elements. In case of
agents or locations, this is often called “containment”. For
example, each of the storages s1 and s2 from Figure 1 is
implemented by two storages, namely {s1.x,s1.y} for s1
and {s2.x,s2.y} for s2 (see Figure 3). A one-to-many map-
ping is also given if an abstract agent is composed of sev-
eral “inner” agents at the lower level.

However, the implementation dependency need not be a
one-to-many mapping in all cases - it can be a many-to-one
mapping as well. For example, several abstract agents of
the same type can be realized by the same one agent at a
lower level, following the principle of time division multi-
plex.

The implementation dependency can also be a dynamic
mapping, e.g. if an abstract storage for binary trees is
implemented by a dynamically changing set of lower-level
storages.

As a direct consequence of mapping locations or opera-
tions, there is an implicit mapping of accesses. Every time
a location or operation has to be implemented by multiple

locations or operations, a high-level access must generally
be „splitted“. Figure 4 shows the low-level accesses for the
example above: Rs2.x and Rs2.y correspond to Rs2 (cp. Fig-
ure 2), Ms1.x and Ms1.y correspond to Ms1.

2.6. Implicit Transactions and Snapshots

Locations, operations and implementation dependency
actually establish the conceptual basis for answering the
questions discussed in section 1.3..

As already mentioned, the mapping of locations and
operations according to the implementation dependency
implicitely defines a mapping of each high-level access to
a set of lower-level (implementing) accesses. However, as
a result from the high-level view and the assumption of
temporal consistency (see section 2.4.), each access set
must actually fulfill the atomicity, consistency and isola-
tion requirements of the “ACID properties” [1]:

A set of accesses must be performed completely or not
at all, because an incomplete set of accesses cannot be
interpreted as a (successful) abstract access (→atomicity).

Intermediate values occurring between two lower-level
accesses have no meaning at the high-level view (where a
value change interval is given). Hence they must not be
observable in the context of another access set. When all
low-level accesses are completed, the resulting value(s)
must represent (be consistent with) the abstract value after
the high-level access (→consistency).

Conflicting abstract accesses may only occur in a
defined temporal order (see section 2.4.). The related
lower-level access sets must be serializable in a corre-
sponding order (→isolation or serializability).1

c1

s2.x

s2.y

a1s1.x

s1.y

a2

Figure 3. Compositional Structure (Low Leve)

1. Non-conflicting accesses may overlap. In this case, serial-
ization is automatically possible.

add

time

1

2

2

4

Rs2.x

Rc1

Rs1.x Ws1.x

5 1

Rs2.y

4 5

Rs1.y Ws1.y

s1.x := s1.x+s2.x
(triggered via c1)

s1.y := s1.y+s2.y

s2.x

s1.x

c1

s2.y

s1.y

Ms1.x

Ms1.y

Figure 4. Accesses to Locations (Low Level)



The above three properties are requirements which must
be met at the lower level in order to comply with the high-
level model. The fourth “ACID property”, namely durabil-
ity, would only be mandatory if fail-safety would be given
as an additional requirement.1

If we ignore durability, transactions can be derived
solely on the basis of architectural models and their rela-
tionship as defined by the implementation dependency:

For each abstract operation affecting n abstract loca-
tions, there are n sets of implementing accesses which must
(potentially) be managed as transactions.

In the example above (see section 2.5.), two potential
transactions can be derived, namely access set
{Rs2.x,Rs2.y} and {Rs1.x,Ws1.x,Rs1.y,Ws1.y}.

If transactional techniques (e.g. locking) are actually
neccessary depends also on the compositional structure. If
an abstract storage is not subject to conflicting accesses
(i.e. if only one agent performs sequential accesses) no spe-
cial effort is needed.

The interpretation of transactions discussed above
allows to distinguish between different types of transac-
tions as well:

• If an abstract operation is implemented as an operation
sequence an access sequence is given for each affected
abstract location. Each of these access sequences repre-
sent a flat transaction.

• If a storage S is implemented as a set of storages
{s1,s2,...sn} and an operation accessing S is realized as

a set of concurrent operation sequences, each of them
accessing a corresponding low-level storage si, the
resulting accesses form a distributed transaction.

• A nested transaction can be derived if the mapping of
accesses spans multiple levels, i.e. if lower-level opera-
tions or storages themselves have to be implemented by
operations or storages of the next lower level, etc.

The need for snapshot algorithms [6][7] can also be
interpreted as the outcome of a model mapping. If an
abstract operation reads multiple storages but must be
implemented by a set of operations (e.g. because the loca-
tions cannot be read within one operation), a snapshot must
be implemented in order to guarantee the causal consis-
tency required for the abstract operation‘s read accesses
(see section 2.4.). Therefore, the implementing operations
must be coordinated via a snapshot algorithm.

3. Application and Further Research

An important motivation behind the modeling approach
discussed here is to establish a better basis for designing
transactional distributed systems. Transactions or lock
requests no longer need to be introduced as additional con-
cepts in later design stages. They can be derived from
architectural models in a “natural” way, because abstract
storages, abstract operations and implementation depen-
dencies are integrated concepts of these models. For exam-
ple, a shared abstract storage could be realized as an object,
i.e. the abstract storage is implemented by the object’s
attribute storages. The types of operations which affect the
abstract storage would be mapped to methods of that
object. However, the high-level model requires the method
calls to be serialized, e.g. by locking the object.

Furthermore, the “conceptual distribution” in terms of
abstract storages can help to determine the adequate physi-
cal distribution of a system. Storages which implement the
same abstract storage should be kept “local”, i.e. on the
same hardware node, because otherwise distributed (and
expensive) locking mechanisms were needed in order to
guarantee temporal consistent reads. In contrast, storages
which realize different abstract storages are good candi-
dates for being implemented on different nodes, because
weaker consistency (i.e. causal consistency) is required in
this case - which is easier to achieve.

As already discussed, architectural models according to
our approach establish a basis for identifying transactions
and snapshots. Therefore, it appears useful to integrate the
relevant concepts into a corresponding programming lan-
guage and platform. This idea is being pursued by us in an
ongoing research project, STAGE [24]. A virtual machine
and an accompanying intermediate language are under
development. The intermediate language, as a basis for a
high-level “architecture oriented” language, allows the def-
inition of compositional structures, including abstract stor-
ages, abstract operations and implementation
dependencies. Because this information will be available at
runtime, the runtime environment can transparently detect
and process transactions2 and snapshots.

In this case, explicit transaction boundaries or lock
requests are no longer needed in the program. Instead, the
platform includes a lock management based on abstract
locations and operations, which are defined in the interme-
diate language. Every time an abstract operation has to be
performed, each affected abstract location is identified and,
if neccessary, locked in an appropriate lock mode. How-
ever, locking is done only at the highest possible level. For

1. A detailed discussion of the ACID properties in this context
can be found in [20]

2. Orca [25] follows a similar idea but is built on a simpler
conceptual basis which does not support the concept of
locations.



example, if there is an implementation hierarchy of abstract
storages (abstract storages being implemented by storages
which, in turn, are implemented by storages, etc.), the most
abstract storage is locked, which implicitely locks all sub-
ordinate storages as well.

The actual need for locking also depends on the (shared)
usage of an abstract storage. Whether a storage is accessi-
ble by more than one agent or not can be decided on the
compositional structure which, again, is available at run-
time.

As discussed in section 2.4., causal consistency is
required if multiple locations are read during one operation.
This requirement can be met in different ways, depending
on the physical distribution of the abstract locations. Set-
ting a single lock for all locations to be read would be a
simple but suitable solution if these locations are imple-
mented at the same computer: The lock would guarantee
temporal consistency, which also implies the required
causal consistency. However, this solution appears inap-
propriate if the observed locations are implemented at dif-
ferent computers, because distributed locking could cause
too much unneccessary idle time. In this case, a snapshot
protocol can be used to collect copies of the locations’ con-
tents and temporarily store them in a snapshot cache at the
machine where the operation will actually be processed.
This approach is being implemented at the VM level of the
STAGE platform [24], invisible for the programmer.

In the context of implicit transactions, controlling dura-
bility in an efficient way is one of the open questions.
Demanding each implicit transaction to yield a durable
state would require very frequent safepoints, which might
be too expensive. As an alternative solution, only selected
abstract operations could be marked as operations with
durable results and/or selected abstract storages could be
marked as durable.

Beside data consistency, there are further aspects of dis-
tributed systems which should also be addressed by archi-
tectural models, such as partial failure of hardware nodes or
latency and unreliability of network connections. Our
approach takes this into account, because the elementary
building block for communication is the asynchronous
send operation with potential message loss (see section
2.2., channels). This mechanism does not neccessarily
require a certain agent as receiver, which allows for a vari-
ety of scenarios. A receiver can be (temporarily) unavail-
able or unobservant, multiple receivers can be connected to
a channel for broadcast communication, and synchronous
communication can be built on a pair of asynchronous mes-
sages (a request and a corresponding response).

4. Conclusion

The modeling approach presented in this paper inte-
grates a certain aspect of distributed systems, namely data
consistency. By doing so, architectural models not only
become more expressive, they also form a basis for a more
systematic design of distributed transactional systems and
automatic runtime support for transactional techniques.

5. References

[1] Theo Härder, Andreas Reuter, Principles of Transaction
Oriented Database Recovery - A Taxonomy, University of Kai-
serslautern, 1982

[2] Jim Gray, Andreas Reuter, Transaction Processing: Con-
cepts and Techniques, Morgan Kaufmann Publishers, 1993

[3] George Coulouris, Jean Dollimore, Tim Kindberg, Distrib-
uted Systems - Concepts and Design, 2nd Edition, Addison Wes-
ley, 1994

[4] Carl Adam Petri, Kommunikation mit Automaten, PhD
Thesis,Technische Hochschule Darmstadt 1962

[5] Sape Mullender (Ed.), Distributed Systems, Addison Wes-
ley, 1993, pp. 55

[6] K. Mani Chandy, Leslie Lamport, Distributed Snapshots:
Determining Global States of Distributed Systems, ACM Trans-
actions on Computer Systems, Vol. 3, No. 1, February 1985, pp.
63-75

[7] Gerard Tel, Introduction to Distributed Algorithms, Cam-
bridge University Press, 1994

[8] Mary Shaw et al. Abstractions for Software Architecture
and Tools to Support Them, Carnegie Mellon University, Pitts-
burgh, 1995

[9] Paul C. Clements, A Survey of Architecture Description
Languages, Proc. of the 8th Intl. Workshop on Software Specifi-
cation and Design, 1996

[10] Nenad Medvidovic, Richard N. Taylor, A Classification
and Comparision Framework for Software Architecture Descrip-
tion Languages, Dept. of Information and Computer Science,
University of California, Irvine, 1997

[11] Martin Fowler, UML Distilled, Addison Wesley, 3rd ed.,
2003

[12] Grady Booch, James Rumbaugh, Ivar Jacobson, The Uni-
fied Modeling Language User Guide, Addison Wesley, 1999



[13] Christine Hofmeister, Robert Nord, Dilip Soni, Applied
Software Architecture, Addison Wesley, 1999

[14] Dilip Soni, Robert L. Nord, Christine Hofmeister, Software
Architecture in Industrial Applications, Proceedings of the Intl.
Conference of Software Engineering, 1995

[15] Frank Keller, Peter Tabeling et. al. Improving Knowledge
Transfer at the Architectural Level: Concepts and Notations, In-
ternational Conference on Software Engineering Research and
Practice, Las Vegas, June 2002

[16] Frank Keller, Siegfried Wendt, FMC: An Approach To-
wards Architecture-Centric System Development, IEEE Sympo-
sium and Workshop on Engineering of Computer Based Systems,
2003

[17] Siegfried Wendt et al. The Fundamental Modeling Con-
cepts Home Page, fmc.hpi.uni-potsdam.de

[18] Clemens Szyperski, Component Software, Addison Wesley,
2nd Edition, 2002

[19] Andrei V. Borshchev, Yuri G. Karpov, Victor V. Roudakov,
Systems Modeling, Simulation and Analysis Using COVERS Ac-
tive Objects, IEEE Workshop on Engineering of Computer Based
Systems, 1997

[20] Peter Tabeling, Der Modellhierarchieansatz zur Beschrei-
bung nebenläufiger, verteilter und transaktionsverarbeitender
Systeme, Shaker Verlag, Aachen 2000 (PhD Thesis, University of
Kaiserslautern)

[21] Peter Tabeling, Ein Metamodell zur architekturorientierten
Beschreibung komplexer Systeme, Lecture Notes in Informatics
(LNI) - Proceedings of “Modellierung 2002", Workshop of the
Gesellschaft für Informatik, Tutzing, 2002

[22] Peter Tabeling, Multi-level Modeling of Concurrent and
Distributed Systems, International Conference on Software Engi-
neering Research and Practice, Las Vegas, June 2002

[23] C. A. R. Hoare, Proof of Correctness of Data Representa-
tions, Acta Informatica, vol. 1 no. 4, 1972, pp. 271-281

[24] Peter Tabeling et. al. The STAGE Project Home Page,
stage.hpi.uni-potsdam.de, March 2004

[25] Henri E. Bal et al. Orca: A Language for Parallel Program-
ming of Distributed Systems, IEEE Transactions on Software En-
gineering, Vol. 18, No. 3, 1992


