
Model-Based Development - Beyond Model Transformation

Peter Tabeling
Hasso-Plattner-Institute for Software Systems Engineering

P.O. Box 90 04 60, 14440 Potsdam, Germany
tabeling@hpi.uni-potsdam.de

Abstract are refined - mostly by MDA tools - towards lower-level
The Model Driven Architecture (MDA), as propagated
by the Object Management Group, is often considered to be
a milestone towards model-based development. This paper
argues that MDA should merely be seen as an intermediate
phase towards a truly architecture-based approach to soft-
ware development. Model-based development will only
succeed if we improve the communication within develop-
ment projects. Architectural models must not be seen only
as input of generator tools but as the primary means of
knowledge transfer and as the basis of the division of labor
within a project. In this context, even the object oriented
paradigm might be questioned in the future.

1. Near-Term Objectives of MDA

In 2000, the Object Management Group began working
on Model Driven Architecture [1][2], and later announced
MDA as the new strategy to develop large industrial sys-
tems. According to M. Fowler [3], “MDA is a standard
approach to using the UML as a programming language”.
While this statement arguably simplifies the overall direc-
tion of MDA, it surely reflects one of MDA’s major objec-
tives, namely to provide standardized tools which allow
UML diagrams to be used as input for (at least partial) code
generation.

As a standardization body, the OMG also intends to
define a new integration level above CORBA [5], which
did not really succeed to integrate middleware platforms
such as J2EE [6] or .NET [7] - today, the OMG consideres
CORBA to be a “platform” beside J2EE and .NET [2]. In a
few words, the near-term objectives of MDA can be sum-
marized as (1) platform integration and (2) use of UML as
a “programming language”.

In MDA-related publications [1][2][4], “model transfor-
mation” is often presented as the basic approach to achieve
these goals. The vision is that software architects or devel-
opers use a modeling language, usually UML, to create
high-level (“platform independent”) models (PIM) which

(“platform specific”) models (PSM) and finally executable
code.

2. Long-Term Perspectives

It is expected that first generation MDA tools generate
only parts of the application code, i.e. manual work by
application programmers is still needed. However, the
declared goal of MDA proponents is to minimize or com-
pletely avoid human assistance in code generation - “In a
mature MDA environment, code generation will be sub-
stantial or even complete.” [1] The vision goes even fur-
ther, i.e. not only code generation but also model
refinement from PIM-level to PSM-level will eventually
become a mostly automated and „uninteresting“ step.1

As a consequence, platforms being covered by MDA
will increasingly become invisible because they will be
superseded by higher-level platforms, namely MDA envi-
ronments. 

3. Implications

In essence, MDA will only repeat and continue what has
already been done in the past by introducing assemblers,
compilers, virtual machines and middleware platforms -
namely raising the level of abstraction for software devel-
opers. This achievement will be at least as important as
platform integration.

However, MDA addresses mostly the technical side of
model-based development. A developer switching from
Cobol to Java does not necessarily become a good OO
designer - similary, using MDA tools is not sufficient for a
transition to truly model-based development. Personnel

1. “As ’Forward Engineering Only’ development processes
advance [...] the need for PSMs [...] will tend to decrease,
much as the need for 3GL compilers to save intermediate
assembly code decreased when 3GL source-level debug-
gers matured.” [4], p. 242.



involved in requirements engineering, project planning or
architectural design must also think and communicate in
high-level models and modeling elements. This applies
especially to experts of different fields, like GUI develop-
ers, database designers, the project manager, business pro-
cess modelers and so on. Hence, these experts must not
confine themselves to using just domain-specific models.
Conceptual architectural models are needed which inte-
grate the different views at the high level(s) and foster
project-wide communication [8]. Once software projects
are organized around such models, model-based develop-
ment could show its full potential [9]. For example, work
packages for teams can better be identified on the basis of
components or subsystems of the architecture, instead of
feature sets.

In this context, the question about the „right“ modeling
concepts arises. At present, this seems to be mostly deter-
mined “bottom-up”, i.e. by existing platforms to be inte-
grated and by UML, with its roots in object oriented
development. However, since the 90s it has repeatedly been
stated - especially by proponents of architecture descrip-
tion languages - that objects and classes are no longer suit-
able as building blocks for large systems. Instead,
„components“ and „connectors“ should be the prevalent
modeling and design elements.1 Advocates of object orien-
tation might argue that inheritance, encapsulation and poly-
morphism are valuable benefits which should not be
sacrificed. This is true, but these features are not necessar-
ily tied to objects and could also be achieved in the context
of „architecture oriented methods“, e.g. component types
can be defined utilizing inheritance. It seems promising to
revive concepts of architecture description languages in the
context of model-based development.

While the upcoming UML 2.0 standard is influenced by
these ideas, it is still tailored primarily to object oriented
languages. In addition, the „design-by-commitee-
approach“ of UML has lead to an compilation of (too)
many diagram types with subtle interdependencies, making
UML too complicated for human communication [11] and
giving the users too much choice. A recent study [12]
among major software companies indicates that ad-hoc-
notations are still preferred over UML when doing archi-
tectural design. It seems that UML has made good progress
as the basis for tools, but is not well-prepared for the non-
technical side of model-based development.

4. Conclusion

The success of model-based development heavily
depends on the implementation of its non-technical
aspects. Communication and project managment must be
adapted to an architecture-centric approach - otherwise,
tools for model-based development will have little impact.

5. References

[1] Richard Soley et. al. Model Driven Architecture, Object
Management Group White Paper, ftp://ftp.omg.org/pub/docs/
omg/00-11-05.pdf, November 2000

[2] OMG Architecture Board, Model Driven Architecture
(MDA), Object Management Group, http://www.omg.org/docs/
ormsc/01-07-01.pdf, July 2001

[3] Martin Fowler, UML Distilled - A Brief Guide to the Stan-
dard Object Modeling Language, 3rd ed., Addison Wesley, 2003

[4] David S. Frankel, Model Driven Architecture - Applying
MDA to Enterprise Computing, Wiley, 2003

[5] OMG, The Common Object Request Broker Architecture,
Specification vers. 3.0.2, Object Management Group, December
2002

[6] SUN, Java 2 Platform - Enterprise Edition, Specification,
vers. 1.4, Sun Microsystems, 2003

[7] Microsoft, The .NET Framework, msdn.microsoft.com/net-
framework, Microsoft, 2004

[8] Frank Keller, Peter Tabeling et. al. Improving Knowledge
Transfer at the Architectural Level: Concepts and Notations, In-
ternational Conference on Software Engineering Research and
Practice, Las Vegas, June 2002

[9] Frank Keller, Siegfried Wendt, FMC: An Approach To-
wards Architecture-Centric System Development, IEEE Sympo-
sium and Workshop on Engineering of Computer Based Systems,
2003

[10] Nenad Medvidovic, Richard N. Taylor, A Classification
and Comparision Framework for Software Architecture Descrip-
tion Languages, Dept. of Information and Computer Science,
University of California, Irvine, 1997

[11] Joaquin Miller, What UML Should Be, Communications of
the ACM - article series, vol. 45, no. 11, November 2002

[12] Frank Keller, Über die Rolle von Architekturbeschreibun-
gen im Software-Entwicklungsprozess, PhD thesis, Hasso-Platt-
ner-Institute at the University of Potsdam, Germany, 2003

1. “[...] separating components form connectors, raising them
both to visibility as top-level abstractions [...] also raises
them in the conciousness of the designer.” [10] p. 19.


	Model-Based Development - Beyond Model Transformation
	Abstract
	1. Near-Term Objectives of MDA
	2. Long-Term Perspectives
	3. Implications
	4. Conclusion
	5. References


