
Handling Complexity of Large Software Systems
by Mapping Objects and Classes

to Conceptual Architectural Elements

Peter Tabeling, Bernhard Gröne
Hasso-Plattner-Institute for Software Systems Engineering

P.O. Box 90 04 60, 14440 Potsdam, Germany
{peter.tabeling, bernhard.groene} @hpi.uni-potsdam.de

Abstract and understand due to their volatility and the fragmentation
Today, the overall program code of an industrial soft-
ware system often comprises several thousand classes and
interfaces. While UML class diagrams and packages can
principally help to gain a better overview of the program
code, other techniques are needed to define a correspond-
ing architectural model of the (intended) running system.
This applies especially to object-oriented systems where
models of runtime object structures have no explanatory
power because they represent volatile snapshots with
excessive fine granularity. This paper presents techniques
to map such structures to coarse-grained and stable archi-
tectural models.

Keywords: Software Architecture, Conceptual Architec-
tural Models, Fundamental Modeling Concepts, FMC.

1. Introduction

1.1. System Architecture vs. Code “Architecture”

In the literature, the term “Software Architecture” is
often used to identify the “high level, important structures”
of a software system. However, only few authors clearly
state what kind of structures they refer to. In this context,
we should distinguish at least two types of structures,
namely (1) system structure and (2) code structure. The lat-
ter consists of code fragments and their relationships. In
case of object oriented systems, these are primarily classes,
their associations and dependencies. In order to grasp the
code “architecture”, these should be further organized by
means of packages, for example.

But structures of the code itself must not be confused
with structures of the first category, i.e. the structures of the
running system which comes into existence when the code
is executed. On a very low level, these are large, highly
dynamic object structures which are difficult to describe

of the system’s functionality into thousands of small
objects. This is reflected by the relatively wide-spread
opinion that objects are not abstract enough to describe
conceptual system architectures.1 Instead, “components”
and “connectors” are considered to be the first-order
abstractions of architectural models.2

1.2. The Problem of Mapping Objects and Classes
to Architectural Components

To obtain a meaningful architectural model of the sys-
tem, object structures must be reduced to more abstract,
conceptual components and connectors. While deriving a
conceptual system architecture from objects and classes is
more the “reengineering side” of the problem, the opposite
direction is equally difficult and important when develop-
ing large systems. In order to to avoid non-traceable transi-
tions from architectural models to software design (and
vice versa), practitioners need some rules to perform such
mappings.

2. Mapping Policies

In the following, we present different possibilities to
map objects and classes to architectural models, depending
on typical usages of objects. We use the Fundamental Mod-
eling Concepts (FMC) [2][3][4] as the basis to describe
conceptual architectural elements. FMC distinguishes
between active components, called agents, and passive
components, called channels or storages. While all pro-

1. The term “conceptual system architecture” is used here to
express the focus on high-level, not hardware-related, sys-
tem structures.

2. “[...] separating components form connectors, raising them
both to visibility as top-level abstractions [...] also raises
them in the conciousness of the designer.” [1] p. 19.

cessing is done by agents, storages can be used by them to
store data and channels can be used to transmit information
between agents. Figure 1 shows the corresponding notation
(more information about FMC can be found in [2],[4].)

When mapping objects to agents or storages, three basic
mapping types can be differentiated - simple (one-to-one-)
mappings, hierarchical (many-to-one-) mappings and
many-to-many-mappings. We call the different mappings
„views“, because each type of mapping represents a certain
way to interpret or “look at” objects.

2.1. Simple Mappings

Object Agent View. Considering an object to be an agent
is a common interpretation in object-oriented design. An
object agent is an active and abstract component of the sys-
tem. Calling a method is interpreted as sending a message
to a receiver object which carries out the desired operation
and responds with an answer. Only the object agent has
access to the attribute data associated with the object.
Methods describe which messages the object can handle,
what operations on its data it can perform and which mes-
sages it sends to other objects (see, for example, [5], p.6).

A typical example for this view is an event dispatcher
object: GUI toolkits usually use a singleton object to dis-
patch GUI events (e.g. mouse moved or button pressed) to
other objects which have been registered as handler for cer-
tain event types. Figure 2 shows this scenario. Objects are
modeled as agents with internal storage holding the
object‘s attribute data. „Knowing“ other objects by their
object ID (reference) is symbolized by a channel which can
be used to exchange requests and answers between objects.

Abstract Data Type View. Another common interpreta-
tion can be called the ”abstract data type view“. Here, an
object is seen as a storage for an abstract data type which is
described by the corresponding class. For example, Ber-
trand Meyer presents this interpretation of objects—he
defines a class as „an abstract data type equipped with a
possibly partial implementation“ [[6], p.142]. The class not
only lists the operation types (i.e. the method signatures) of
the abstract data type, it may also provide the implementa-
tion of the data storage (i.e. the attribute storages) and the
implementation of the operation types (i.e. the method bod-

ies). From this point of view, an object can be seen as a pas-
sive system component (a storage), and a method call can
be interpreted as an operation which is performed on the
object by other system components (i.e. the caller of the
method), rather than a message causing the object to per-
form the operation on its own.

Figure 3 shows a typical example of this type of view.
The ”Vector“ class defines an abstract data type ”Vector“
with operation types (scale, add, rotate etc.) as well as the
implementation of the Vector data and the operation types.
Following the data type view, an instance of the ”Vector“
class can be seen as a storage which holds an abstract ”Vec-
tor“ value.

The simple mappings discussed above actually do not
reduce complexity and can be inappropriate in case of
multi-threaded systems. Nevertheless, they are typical
interpretations of objects which can be found quite often
and can be used beside hierarchical and many-to-many-
mappings.

2.2. Hierarchical Mappings

High–level Abstract Data Type View. A quite obvious
way to model a set of objects is to extend the idea of the

R
agent

human
agent

channel

storage

read
access

write
access

R direction of request
agent

Figure 1. FMC Notational Elements

Circle 1

Circle
Methods

Circle
Properties

Dispatcher
Event

Registry

GUI I/O System

R

Re ctangle 1

Rectangle
Methods

Rectangle
Properties

"OK"-Button

Button
Methods

Button
Properties

R R

screen,
mouse, keyboard

Object Agents

Figure 2. Object Agent View: A Dispatcher
(Block diagram)

Storage
for a

vector

Vector
User

- x, y, z: float

Vector

<< call >>

scale ,
add,
rotate ,
...

+ scale(f: float)
+ add(v: Vector)
+ rotate(m: Matrix)
...

Architecture view
(one object)

Class view

VectorUser

Figure 3. Abstract Data Type View (Class Dia-
gram / Block Diagram)

abstract data type view. There are cases where the defini-
tion of a single class is not sufficient for the realization of
an abstract data type. For example, a data type ”tree“ could
be needed which stores arithmetic expressions as binary
trees. For this purpose, one might define the classes as
shown in Figure 4. Instances of classes derived from
”node“ would represent a tree's nodes and a ”tree“ object
would be the placeholder of the whole tree. This object pro-
vides methods to access the whole object structure, such as
calculating the value of the tree (i.e. the value of the corre-
sponding expression).

The basic idea behind the tree–related classes is to pro-
vide the possibility to store trees. Hence, at a higher level,
the complete object set holding a certain tree can be viewed
as a single storage for an abstract data type ”tree“ - see
upper right corner of Figure 4. This view yields a single
storage as an abstract, compact model of an object set. This
model remains valid even if the underlying object structure
consists of many objects and changes over time - in the
architectural model, only the current value (i.e. the tree) in
the storage is changed. The operation types defined for the
abstract data type (e.g. tree evaluation) are not imple-
mented by a single method but the combined methods of
several classes (here: the ”evaluate“ methods).

High-Level Object Agent View. It is sometimes reason-
able to combine many objects to one agent. Take, for exam-
ple, a persistency service which consists of a singleton
object of the persistency manager class and a set of class
agents, one singleton object for each persistent class.

Figure 5 shows the persistent objects, the persistency
service, the transaction service and the database. The task

of the persistency service is to create or load persistent
objects from the database and to save altered object data
whenever the transaction service requests it in case of a
commit. The persistency manager just keeps a list of the
classes, while the class agents read and write object data
and create objects; they have all information about their
class and know which objects have been altered. Class
agents are therefore factories for persistent objects and part
of the persistency service. The persistency manager is the
representative of the persistency service. (This architecture
has been chosen for the project ”Object Services“ at SAP
in 1999 [7].)

2.3. Many-To-Many Mappings

Functional View. The views presented above have in com-
mon that one architectural element (storage or agent) is
mapped to many objects. However, this is not appropriate
if the architectural model primarily represents a functional
decomposition. Figure 6 shows an architectural model of a
simple graphic editor where each component provides a
certain functionality, namely editing, displaying, printing
and persistency. The central storage holds all data descri-
bing the graphic drawing currently being modified. The
agents rely on certain components of the underlying plat-
form, e.g. the file system.

While this model is very useful for presenting a system
overview, a one–to–one or one–to–many mapping of archi-
tectural elements to objects would not result in an appropri-
ate code structure. Following object–oriented design
principles, we should define a class ”GraphicObject“ with
subclasses for the different types of graphical elements, i.e.
rectangles, circles etc. - see the class view in Figure 6. The

Node

+ evaluate(): float
...

NonLeafLeaf

+ evaluate(): float
...

- value: float

0..1

1

- subnodeLeft

1

- subnodeRight

minusNode

+ evaluate(): float
...

plusNode

+ evaluate(): float
...

{ return
subnodeRight->evaluate() +
subnodeLeft->evaluate(); }

0..1 1

- root
Tree

0..1

. . .

. . .

+ getRoot(): NodeRef
+ evaluate(): float
...

{ return
root->evaluate(); }

{ return value; }

TreeUser

<< call
>>

getRoot
e valuate
...

Storage
for a
tree

Tree
User

Class view
Architecture view

(one Tree)

Figure 4. High–Level Abstract Data Type View:
Tree Storage
(Class Diagram / Block Diagram)

Transaction Service

Pe rsiste ncy Se rv ice

Persistency Manager (singleton)
list of class

agents

class
agent for
class A
(singl.) Mapping

object
state info

class
agent for
class X
(singl.) Mapping

object
state info

Database Mangement System

Database

R

Persistent Obje cts

Rcreate,
find

Trans-
action

Manager

Trans-
action
Tree

R

R
save

start,
commit

create object,
set & read data

Figure 5. High-level Object Agent View: Persis-
tency Service (Block Diagram)

implementation of displaying, editing and other operations
depends on the implementation of the graphic element
data. Hence, each of the classes should not only define a
storage format for graphic data but also contain methods
corresponding to the various operation types. (Of course,
additional classes had to be defined beside these classes.)

The example shows a many–to–many mapping of
objects to architectural elements. The collective object
attribute data is mapped to the ”graphic objects data“ stor-
age, and all methods implementing a certain functionality
(e.g. editing methods) are mapped to a corresponding agent
(e.g. the ”edit agent“). We call this mapping the ”functional
view“ because the architectural model reflects the func-
tionality provided by the program code.

3. Conclusions

The different views presented above foster a mostly sys-
tematic mapping of object structures/classes to architec-

tural models. This mapping can be done following certain
criteria which are described in [8]. By applying these map-
pings - especially the one-to-many and many-to-many
mappings - large, highly dynamic object structures can be
„concentrated“ into a coarse-grained and stable architec-
tural model which is easier to understand and describe.
Additional types of mappings are discussed in [8] which
help modeling multithreaded systems.

4. References

[1] Nenad Medvidovic, Richard N. Taylor, A Classification
and Comparision Framework for Software Architecture Descrip-
tion Languages, Dept. of Information and Computer Science,
University of California, Irvine, 1997

[2] Frank Keller, Peter Tabeling et. al. Improving Knowledge
Transfer at the Architectural Level: Concepts and Notations, In-
ternational Conference on Software Engineering Research and
Practice, Las Vegas, June 2002

[3] Frank Keller, Siegfried Wendt, FMC: An Approach To-
wards Architecture-Centric System Development, IEEE Sympo-
sium and Workshop on Engineering of Computer Based Systems,
2003

[4] Siegfried Wendt et al. The Fundamental Modeling Con-
cepts Home Page, fmc.hpi.uni-potsdam.de

[5] A. Goldberg, D. Robinson, Smalltalk-80: The Language,
Addison Wesley, 1989

[6] Bertrand Meyer, Object-Oriented Software Construction,
2nd Ed., Prentice Hall, 1997

[7] Bernhard Gröne et al. Object Services für R/3 Release 99 -
Konzepte, SAP AG Walldorf, Germany, 1999

[8] B. Gröne and P. Tabeling, Mappings Between Object-Ori-
ented Technology and Architecture-Based Models, International
Conference on Software Engineering Research and Practice, Las
Vegas, CSREA Press, June 2003

Graphic objects data

GUI I/O System + Event
Dispatcher

Rectangle Circle

File I/O

Device
 I/O

Files

Printer
print-
outs

R

GraphicObject
-x,y, ...

<<displaying>>
+draw()
+erase()
...
<<editing>>
+scale()
+rotate()
...
<<persistency>>
+serialize()
...
<<printing>>
+print()
...

Rectangle
...
...

Circle
...
...

...

...

Architecture view Class view

Display
Agent

Print
Agent

Edit
Agent

Persist.
Agent

Rectangle

R

R

Figure 6. Functional View: Graphic Editor
(Block Diagram / Class Diagram)

	Handling Complexity of Large Software Systems by Mapping Objects and Classes to Conceptual Archit...
	Abstract
	1. Introduction
	1.1. System Architecture vs. Code “Architecture”
	1.2. The Problem of Mapping Objects and Classes to Architectural Components

	2. Mapping Policies
	2.1. Simple Mappings
	2.2. Hierarchical Mappings
	2.3. Many-To-Many Mappings

	3. Conclusions
	4. References

