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Abstract 1. Introduction
Large and complex computer based systems are the result
of an evolution process which may take many years. Heter-
ogeneity is an important characteristic of such systems:
During the evolution process, different technologies were
used for development; different third-party products were
integrated into the system; information about the system
components is often incomplete, scattered over a company
and comes in various formats. To support the development
of large systems, this information has to be collected and
integrated into architectural models.

Hence, architecture elicitation of a large computer
based system has to cope with the heterogeneity of technol-
ogy and information sources. Some information can be
extracted and prepared by tools, but the majority is usually
inside documents and the heads of the developers. There-
fore, in addition to tool support, this task requires a lot of
abstraction which can only be done by humans.

This paper presents concepts and abstractions for inte-
grative modeling, based on the Fundamental Modeling
Concepts. It provides the necessary abstractions to com-
bine the information about the different system compo-
nents, including third-party products and hardware, into
one integrated architecture model. The approach reflects
experiences from many architecture elicitation projects. It
covers modeling patterns and typical abstractions, sup-
ported by guidelines for the elicitation process.

The terminology and notation focuses on the communi-
cation about technical systems between persons being
involved in system development. As a benefit, integrative
models foster the efficient evolution of large systems, the
introduction of new developers, or the handing over of a
project.

Keywords: Modeling, Architecture, Heterogeneous Sys-
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1.1. Large and Heterogeneous Systems

Today, the software part of commercial computer based
systems is typically very large, i.e. a program size of sev-
eral million lines of code is not unusual.

Largeness implies evolution. A complete redesign of a
system of that size would introduce too many errors with
the new code and reimplementing the existing functionality
would be too expensive and time-consuming. Therefore,
these systems are often maintained in an evolutionary way,
i.e. by keeping most of the software and changing or adding
only a few percent of code [1]. 

Evolution implies heterogeneity. As an unavoidable con-
sequence of the evolutionary maintenance, large systems
contain significant amounts of ’legacy’ code. For example,
SAP’s NetweaverTM platform comes with several 10 Mil-
lion lines of code being written in the 90s as part of the
R/3TM system. Because technology and programming ’par-
adigms’ change significantly over time, such systems inev-
itably incorporate a wide variety of languages, libraries,
frameworks, protocols, etc. being designed by different
teams and third parties. Heterogeneity is even greater in
case of large embedded systems, where a mixture of hard-
ware and software components ist given.

1.2. Architecture Elicitation

Systems of the size and complexity as described above can
only be developed and maintained on the basis of a well
understood, adequately described and maintained overall
architecture.

Roughly following the architectural views from [2][3],
the following types of architectural structures are distin-
guished:



• System structures in terms of conceptual or physical
components of the running system which interact to
offer the required functionality. These can be high-
level, conceptual models close to the application
domain (conceptual view) or low-level, platform-
related models (execution view and hardware architec-
ture).

• Software structures in terms of source code modular-
ization, e.g. as classes, interfaces, etc. (module view),
or software structures in terms of deployable code
units, e.g. libraries, executables, etc. (code view).

There are several scenarios where (re-) establishing and
modeling such architectural structures from code, docu-
ments or other sources of information is needed:

• Documentation

If the system reaches a certain complexity, at the latest,
its overall architecture should be consolidated and
described.

• Evolution

If a system is updated evolutionary, software structures
are changed while system structures should mostly
remain stable. In order to avoid architectural erosion,
architectural models must exist and be updated regular-
ily to reflect changes.

• Porting

When porting a system, its platform or significant parts
thereof are exchanged, i.e. not only software structures
are affected, but also platform-related models. How-
ever, high-level system structures should remain valid.
Therefore, these structures must be identified and
described in a first step.

• Reengineering

In contrast to porting, even high-level structures are
subject to change. In order to identify and discuss the
neccessary changes, architectural models are needed.

1.3. Resulting Problems

All these scenarios have in common that a „big picture“ has
to be extracted from a variety of information sources, such
as existing programs, hardware structures, documentation
etc. Due to the size and heterogeneity of the systems being
discussed here, the integration of the many different con-
cepts requires a very flexible approach. Abstraction and
presentation techniques are needed which allow, for exam-
ple, to combine objects, assembler code and hardware com-
ponents within a single model. These models are
mandatory means of communication, used by architects,
chief developers and project management [4][5].

Heterogeneity of system components. As pointed out
above, real-life systems use a variety of techniques in terms
of hardware or programming languages. The architecture
of a system therefore comprises not only the software writ-
ten by the own developers, but also other components
bought and used as ’black box’, like server hardware or
operating system.

Heterogeneity of information sources. The heterogene-
ity of system components implies that information about
them can not be found in one place. Typical information
sources are documentation, source code (if available) or
developer’s knowledge.

Tools can support the extraction of information from
some sources, typically from source code. Unfortunately
these tools can hardly analyze a mixture of different pro-
gramming languages and ’paradigms’. Even a tool being
capable of doing so can never retrieve the architectural
structures being buried in third-party binary components,
hardware, documents and - last not least - the heads of per-
sons being involved in a project.

Integrative models. The heterogeneity of system compo-
nents and information sources results in a big number of
different information pieces which have to be integrated to
an architectural model. This integrative model should pro-
vide abstractions which can be mapped to all used tech-
niques, at least to hardware and software as well.

At first sight, UML [6][7], with its profiling and exten-
sion mechanisms, seems to be a possible solution. How-
ever, adding all the neccessary profiles to the already hard-
to-handle complexity of UML’s thirteen diagram types
makes UML a bad candidate for the intended usage of the
models. A recent study among software companies [4]
shows that UML is primarily used in the context of coding
and low-level software design but does not play a signifi-
cant role in the modeling of an overall, high-level architec-
ture.

Sharing knowledge. The need for division of labor does
not only apply to the development, but also to the architec-
ture elicitation of large computer based systems. Different
specialists may extract architecture information from the
various information sources. They then need to share their
knowledge in order to create an integrative model. It is
obvious that the integrative model implies a common lan-
guage for the specialists and should therefore be optimized
for the human communication of technical issues.

Experience from several modeling projects showed that
revealing architectural structures from large, heteroge-
neous systems requires significant human effort and strong
abstractions. This must be supported by:



• a conceptual basis which is flexible enough to enable
the integrative description of a heterogeneous system

• modeling and abstraction techniques which help to fur-
ther reduce the system’s complexity

1.4. Outline

The following sections present a modeling approach and a
set of approved abstractions which have been developed
over several years and reflect experiences drawn from a
variety of modeling projects. These projects addressed both
academic and industrial systems, such as the Apache HTTP
server [8][9][10] and SAP’s R/3TM system. The methodol-
ogy has been successfully applied at Siemens, SAP, Alca-
tel, BMW and others.

Section 2 gives a short introduction to the terminology
and notation and discusses its focus. Typical abstractions
needed for architecture elicitation will be discussed in sec-
tion 3. The additional guidelines in section 4 deal with the
practical application during architecture elicitation. Section
5 gives some examples of architecture elicitation projects
which have also influenced the terminology and notation.

2. Integrative Modeling with FMC

2.1. Basic Concepts

The modeling approach is based on the Fundamental Mod-
eling Concepts (FMC), an approach for describing archi-
tectural structures of computer based systems, using a
semiformal graphical notation [11] [12].

In order to support a wide variety of systems, FMC dis-
tinguishes three basic types of system structures which are
fundamental aspects of any computer based system:

• Compositional structure, i.e. the static structure con-
sisting of the interacting components of the system.

• Dynamic structure, i.e. the behavior of the components.

• Value structure, i.e. the data structures found in the sys-
tem.

The corresponding conceptual and notational elements will
be discussed below. However, the presentation will focus
on elements of the compositional structure since these are
the most important in the context of this paper. More infor-
mation about FMC can be found in [11] and [12].

Compositional structure. Any system can be seen as a
composition of collaborating components called agents.
Each agent serves a well-defined purpose and communi-
cates via channels (or shared storages, see below) with
other agents. If an agent needs to keep information over
time, he has access to at least one storage where informa-

tion can be stored. Channels and storages are (virtual) loca-
tions where information can be observed.

The agents are drawn as rectangular nodes, whereas
locations are symbolized as rounded nodes1. In particular,
channels are depicted as small circles and storages are illus-
trated as larger circles or rounded nodes (see Figure 1). The

possibility to read information from or write information to
a location is indicated by arrows. Types of agents and loca-
tions are identified by descriptive textual labels.

Arbitrary complex structures can be described because
agents can be connected to multiple locations and locations
can be shared by multiple agents. For example, it is possi-
ble to describe unidirectional, bidirectional channels (con-
necting only two agents) as well as broadcast channels
(connecting more than two agents — see Figure 1) and
channels for sending requests (bidirectional, with an “R”-
arrow indicating the request direction). Shared storages
can be used for buffered communication.

In general, agents and locations are not necessarily
related to the system’s physical structure. The composi-
tional structure facilitates the understanding of a system,
because one can imagine it as a physical structure (e.g. as a
team of cooperating persons). Nevertheless, on lower lev-
els of abstraction a direct mapping to physical parts of the
system might be possible. As sections 3.1. to 3.6. will
show, agents and locations can represent both hardware-
and software-related elements.

Dynamic structure. One of the fundamental concepts for
describing system behavior is the event, a value change
occurring at a certain location and at a certain point in time.
An operation is the “smallest” activity an agent can per-
form — an agent reads values from several locations, pro-

1. This notation originates from an industry standard [13]
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cesses these values and writes the result to a certain
location. This covers state changes (writing storages) and
communication (writing or reading channels). Operations
can be triggered by events and in turn produce events. This
leads to causal dependencies of events.

FMC diagrams for dynamic structures are based on Petri
nets [14], thus providing a sound basis for describing both
sequential and concurrent systems. Labeled transitions
symbolize event types, operation types or even complex
activities, whereas places (mostly) symbolize control
states. Additional places and edges are introduced to
describe causal dependencies resulting from communica-
tion, see Figure 2. Branch conditions are expressed as pred-
icates at edges (see Figure 2, below “receive request”).
Another extension allows the description of recursion, see
[15].

Value structure. Each location of the compositional struc-
ture holds a unit of information, called a value. A value can
be a simple, unstructured value such as a bit or integer as
well as a structured value like a tree or the whole content
of a database. FMC offers a dedicated diagram type for
value structures, an extension of entity/relationship dia-
grams [16]. More information can be found in [11].

2.2. Scope and Focus

The strict separation of system structures and software
structures as discussed in section 1.2. is an important ele-
ment of FMC, because FMC is focused on system struc-
tures. Hence, the modeling of a software system means
more than describing structures of the self-written program
code. Instead, it covers runtime structures of the whole sys-
tem, at the intended level of abstraction. This can include
runtime object structures, operating system services, a vir-
tual machine, and other third-party components. The basic

idea is that these elements are needed to provide the com-
plete functionality of the system — hence they have to be
reflected in a model of the overall system architecture.

In case of third-party components, the model should
describe as much functionality or control flow as needed to
understand the self-contributed parts of the system. For
example, using a framework with a pre-built event dis-
patcher partially dictates the compositional structure and
control flow of an application. In order to illustrate the
overall behavior, both the pre-built event dispatcher and the
self-defined event handlers have to be combined in one
model (see also Figure 4). 

3. Typical Abstractions

3.1. Modeling of Software Artifacts

Even though object-oriented methods seem to be the pre-
dominant development technique, there is often a need to
adopt a non-object-oriented view on software.

Third-party components. These are often given as binary
code with accompanying documentation being the only
source of information.

• Libraries

They often describe general or domain specific data
types, including the related operation types and imple-
mentation. Since the code primarily provides types
missing in a given programming language, it is usually
not appropriate to introduce a ’library agent’ into the
system model. Instead, the library can be reflected in
the model by instances of storages of the library data
types actually being used in the system. Operations
being defined in the library show up as abstract opera-
tions in the behavior model of (application-related)
agents accessing these storages. This corresponds to the
data type view as described in section 3.2.

• Frameworks

A Framework imposes parts of the overall composi-
tional structure and behavior. Thus it must be reflected
in both types of models. This can be done, for example,
by describing a GUI framework’s event dispatcher as
an agent, controlling the (self-written) event handlers
by sending requests to them via channels Figure 4. For
the dynamic structure, the event loop yields the tem-
plate of the overall control flow, with event handler
activities filling the gaps.

• Subsystems

Stand-alone products like a database system or platform
services like a persistency service or a request broker
offer basic functionality to other parts of the system.
Each functionality is typically represented as a single
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agent being capable of receiving and processing certain
requests (e.g. a persistency service) or transporting
requests (request brokers, event services).

Generally, agents, storages and channels can each be
derived by answering one of the following questions, based
on the component’s documentation:

• What data processing functionalities or services are
provided by the component?

• Which implicit or explicitely named information must
be ’kept inside’ or ’remembered’ by the component?
Which agents need to access that information and how
(read, write, modify)?

• Which implicit or explicitely named requests, messages
or event notifications are exchanged between which
agents and in which direction?

Platform-related elements. In case of platform-related
models (the ’execution view’ [2][3]), the compositional
structure can also be derived from the following elements:

• Processes and threads

These can be modeled as agents, either one agent per
process (or thread) or multiple processes (or threads)
can be mapped to one agent. The latter can be done if
the processes co-operate in order to realize a certain
functionality and the model should hide this co-opera-
tion.

• Memory areas and files

These should, by nature, be represented as storages. If
files or memory areas are accessed by several processes

(or threads), this is reflected by a shared storage with
corresponding access arrows.

• Semaphores, locks

Showing processes (threads), files and memory areas
can help to illustrate access conflicts and synchroniza-
tion between processes or threads when sharing files or
memory. In this case, the model can be enhanced by
including locking mechanisms. This can be done by
adding a lock (semaphore) manager as agent, which
receives and processes lock-related requests sent by
processes or threads.

• Network connections

The simplest way to cover network connections is to
introduce a channel for each connection. However, in
some cases it might be appropriate to describe the net-
work service of the platform as a dedicated agent, with
the processes being connected to it. This can be useful
if more aspects than message transport have to be
shown.

An agent or storage can further be refined based on the dif-
ferent functionalities a process performs or the different
data structures being stored in a file or shared memory.

Non-object-oriented code. Many computer-based sys-
tems rely on non-OO software for various reasons. In this
case, modules have to be classified for modeling instead of
classes. Modules which serve controlling purposes, e.g.
containing a dispatcher loop, should be depicted as agents.
However, modules containing data structure definitions
which only implement abstract data types should be illus-
trated as storages — typically one storage per data structure
instance. This again corresponds to the data type view, see
section 3.2.

In case of a large system, mapping each module to a sep-
arate agent or storage would produce a model of too fine
granularity. This can be reduced by combining closely
related modules to a single agent or storage. For example,
all modules dealing with persistency can be mapped to a
single agent named “persistency service”.

3.2. Mapping of Objects and Classes

There are various possibilities to map objects to composi-
tional structures [17][18]. In simple cases, an object is
viewed as an agent or storage.

Object agent view. Considering an object to be an agent is
a common interpretation in object-oriented design. Calling
a method is interpreted as sending a message to the object
which carries out the desired operation. Attribute data is
mapped to an internal storage of the object agent, methods
describe the object agent’s behavior.

Figure 3. An Event Service as Part
of a System Model
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A typical example for this view is an event dispatcher
object, see Figure 4. GUI toolkits usually use a singleton
object to dispatch GUI events (e.g. mouse moved or button
pressed) to other objects which have been registered as
handlers for certain event types.

Abstract data type view. This is another common inter-
pretation where an object is seen as a storage for an abstract
data type being described by the corresponding class —
Bertrand Meyer defines a class as „an abstract data type
equipped with a possibly partial implementation“ [19]. The
class not only lists the operation types (i.e. the method sig-
natures), it may also provide the implementation of the data
storage (i.e. the attribute storages) and the implementation
of the operation types (i.e. the method bodies).

Figure 5 shows a typical example, namely a ”Vector“
class defining an abstract data type ”Vector“ with corre-
sponding operation types (scale, add, rotate etc.). Follow-
ing the data type view, an instance of the ”Vector“ class can
be seen as a storage which holds an abstract ”Vector“ value.

Platform-related view on objects. From the platform-
related execution view [2][3] perspective, an object is just a
data record in memory. This data record view explicitly
shows the inner structure of objects, i.e. the individual stor-

ages for attribute data. In case of the ”Vector“ example (see
above), the storages for the vector components now
become visible, see Figure 6. 

In contrast to the abstract data type view (see above), the
discussion of inconsistency problems in the context of mul-
tithreading is now possible. The architecture model makes
clear that object data is shared between threads, see Figure
6. In order to avoid inconsistency of attribute data, each
thread's operations on object data must be synchronized
with the others, e.g. by using a central lock manager. This
view also provides an elegant way to describe object per-
sistency. A persistency manager can access object data
directly, for example, to increase performance, see Figure
6 below.

3.3. Modeling of Hardware Elements

A mapping of hardware elements to elements of a compo-
sitional structure is straightforward. Processing elements
like an arithmetic-logical unit or combinatorial circuits can
be shown as agents. Memory units and registers can be sim-
plified as storages — in case of dual ported RAM, as a
shared storage. Wires can be mapped to channels, with bus-
ses being a potential exception. These may somtimes be
shown as a communication service (agent), in analogy to
communication services in software systems.

The two views at processors. Processors (stand-alone or
as part of a micro-controller) can be described as an agent
with access to program and data storage (RAM or registers)
being capable of processing the loaded program code.
However, processors are used to implement a component
being defined by its program. Therefore, it is often appro-
priate to replace the processor by an agent representing the
component to be realized.
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3.4. Hiding Software-related Platform Structures

The mappings discussed above allow the transformation of
various technical solutions into FMC-based model ele-
ments. However, they often result in a model of too high
granularity. An obvious way to reduce this complexity is to
integrate partial compositional structures of agents or stor-
ages into higher-level agents or storages.

However, experience shows that this purely composi-
tion-based abstraction alone is not sufficient for establish-
ing high-level architecturals models. Additional techniques
are needed which help to hide typical, implementation-
related aspects of large systems.

Subsystems. Subsystems like a persistency service, an
event service or a request broker provide basic functional-
ity in a generic way. For example, a request broker essen-
tially allows communication. Because this generic solution
is not bound to a certain application domain, it should not
be part of a high-level application-related model.

For example, a request broker (or event service) can be
eliminated from the model and be replaced by the abstract
point-to-point (or broadcast) connections it realizes, see
Figure 8 (left).

Persistency services and database systems are generic
means for providing persistent storage. They can be omit-
ted from a model, where the database or persistency clients
have direct access to abstract, persistent storages, see Fig-

ure 8 (right). In this view, the individual accesses can be
shown (e.g. only A accesses S1, B does not write S2, etc.).

Synchronization mechanisms. Sychronization is needed
when accesses to shared data structures are in conflict and
a transactional set of accesses is used to implement a (vir-
tually) atomic, single access. If a model describes the sys-
tem at a higher level, with abstract shared storages and
abstract atomic operations instead of the implementing
data structures and non-atomic activities, there is no need
for synchronization in this idealized view, see also
[20][21]. Consequently, synchronization mechanisms like
locks and semaphores should be concealed completely at
this level, see Figure 9. 

Caching and replication. Caching and replication replace
storages and agents with multiple storages or agents in
order to decrease access latency or increase safety, respec-
tively. Again, this should not be shown in a higher-level
model, i.e. the corresponding structures can be reduced to
a single, abstract storage or agent.

Multiplexing and pooling. In order to reduce resource
consumption, a single worker (for example, an operating
system process) or even a pool of workers are used to real-
ize a high and changing number of virtual service agents.
Therefore, at a higher level model, these virtual service
agents can replace the worker (or worker pool), including
supporting mechanisms like context management or pool
management.

Figure 7. FMC-based Model
of Harware Elements
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3.5. Hiding Hardware-related Platform Structures

Similar to software-based system models, hardware struc-
tures can be simplified by combining closely-related hard-
ware parts (i.e. part of a compositional structure) to a single
abstract agent. Beside this widespread abstraction, there
are implementation-related structures and elements which
can be removed from a high-level model.

Physical distribution. The physical distribution of a sys-
tem often depends on the individual installation or a pre-
defined hardware infrastructure, i.e. it is often a
deployment and installation aspect. This should be sepa-
rated from higher level models, i.e. these models should not
reflect the physical, but the conceptual distribution (com-
positional structure) of the system.

Physical packaging. The integration and placing of hard-
ware components is often determined by manufacturing
aspects. For example, components with quite different
functions are integrated into a single unit to decrease size
and costs. In a more abstract model, the compositional
structure should not reflect the physical parts but the differ-
ent functionalities.

Subsystems. Similar to software systems, hardware sys-
tems contain elements which provide basic, application-
independent functionality and can therefore be omitted in
higher-level models.

Simple examples are clock generators or driver units.
Both do not serve application-related purposes and can
therefore be ignored in abstract models.

In analogy to a request broker in a software system, a
bus, including the bus arbiter, can be eliminated from a
model. In this case, the hardware components being con-
nected indirectly via the bus are shown as agents with
direct connections, see Figure 11.

3.6. Hiding Object Structures

The object mappings discussed in section Figure 3.2 actu-
ally do not reduce complexity. Reflecting each object as a
dedicated element in an architectural model yields models
of extreme granularity — large systems with thousands or
millions of objects cannot be modeled this way. Hence,
mappings are needed where a collection of objects can be

Figure 9. Hiding Synchronization
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mapped to a single, high–level architectural element
[17][18].

High–level abstract data type view. This view extends
the idea of the abstract data type view (see section 3.2.). It
is applicable when a set of objects is used to implement an
abstract data type. For example, a data type ”tree“, repre-
senting expressions to be evaluated, could be descibed by
several classes as shown in Figure 12. The basic idea
behind the classes is to provide the possibility to store trees.
Hence, at a higher level, an instance of a corresponding
object set can be viewed as a single storage for an abstract
data type ”Tree“ — see top of Figure 12. 

High–level object agent view. In many cases, object sets
can be described as one agent. For example, a persistency
service (agent) may consists of a singleton object of a
generic persistency manager class and a set of singleton
objects, each of them managing persistent objects of a cer-
tain class — see Figure 13. The persistency service creates
persistent objects, restores or saves their state from/to the
database, etc. In a high-level model, the inner structure of
the persistency service would be omitted. 

This architecture has been chosen for an project called
’Object Services’ at SAP in 1999 whose goal was to add a
new persistency and transaction service for ABAP Objects
[22].

The two abstractions presented above have in common
that many objects are mapped to a single element of an
architectural model. While this helps to reduce complexity,
there are still other scenarios where a hierarchical one–to–
many mapping is not sufficient. In this case, further
abstraction techniques are neccessary, see [17][18].

3.7. Further Abstractions

Beside the abstractions presented here, there are further
techniques to build integrative models and reduce their
complexity. One method is to limit a model’s scope to a cer-
tain scenario, for example, a use case. Another way of
abstraction is aspect-oriented modeling, where a model

Figure 13. High-level Object Agent Viev
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only covers a certain aspect like the start-up behavior, error
handling or persistency.

4. Additional Guidelines for Practical Appli-
cation

The concepts discussed above represent a set of well-
proven modeling techniques. This section provides addi-
tional hints for architecture elicitation, based on experience
from modeling large industrial systems (SAP R/3TM, the
Apache HTTP server and others).

Information sources. A very important aspect is the type
and relevance of the different sources of information:

1. Interviews

Architectural models cover what certain stakeholders in
a project view as important: Fundamental software and
hardware elements. As Fowler states in [23], these
components are significant “because the experts devel-
opers say so.“ Therefore, it is recommended to ask
chief developers, architects and project managers about
their ’big picture’. By doing so, one can often gain
information which is unreachable otherwise and gives
valuable input where to search for additional informa-
tion. The latter is often a mandatory basis for the next
steps because studying all documents and program files
is simply not feasible in case of large systems.

2. Documentation

As a complement to interviews, existing documentation
provides important details, even if it is incomplete or
outdated. As stated in [24], “software engineers typi-
cally do not update documentation [on a regular basis
but] out-of-date software documentation remains useful
in many circumstances.” By nature, statements about
architectural structures are most probably still valid
while most changes affect low-level details.

3. Running system, program code, design specifications

Remaining uncertainties can be solved by analyzing the
running system, selected program sections and specifi-
cations. Here, tools support searching and navigating.

Iterative modeling. The priority list above should not be
interpreted as a three-phase process model. Instead, after
creating or updating a model, it should again be presented
to the stakeholders in additional interviews, in order to
reveal misunderstandings and missing elements. Updated
documentation should first be released to ’beta readers’, i.e.
other persons with little knowledge about the described
system. This helps optimizing models and related docu-
ments for the customer and newly hired personal joining a
project team. If neccessary, this process can be repeated
several times.

Models reflect consensus. A frequent observation is that
different people have different views of a system. In order
to create a meaningful model of the overall architecture, the
different views must be integrated. This can even produce
additional, important input to a project, because the stake-
holders must agree to a common view of the system. Sec-
ondary, complimentary models can cover information
which is only relevant to certain persons or groups.

5. Experiences

Development of FMC was started in 1974 during an archi-
tecture elicitation project of Siegfried Wendt for the Sie-
mens AG and has been refined in the following years in
many other projects with industry partners [12].

One of the biggest architecture elicitation projects was
the modeling of the SAP R/3TM basis system between 1990
and 1996. As it turned out, the most important information
source were the leading developers. The elicitation process
typically started with an interview to get a rough idea of the
concepts, followed by examination of the running system
(if possible) and inspection of the source code. Because the
R/3 system relies on several, partially proprietary program-
ming languages (C, RSYN, CCB, ABAP, DYNP) and var-
ious platform technologies, heterogeneity was a major
challenge. Many iterations led to more details on the one
hand and to better abstractions on the other hand. The result
was a series of technical reports, the ’SAP Blue Books’.1

They are not only used inside SAP. For example, IBM used
some of these reports when porting the R/3TM basis to the
AS/400TM platform.

During another architecture elicitation project, a widely
used open source system has been analyzed: Between 2001
and 2003, research assistants and students of the Hasso-
Plattner-Institute examined and modeled the Apache HTTP
server and published the results [8][9][10].

6. Concluding Remarks

The notational concepts and abstraction techniques pre-
sented above have been developed during a series of
projects in academia and industry. Due to the independency
from individual platforms, programming languages and
paradigms, FMC has proven to be a very good conceptual
basis for describing architectural structures of large and
heterogeneous computer based systems.

1. Unfortunately, these reports can’t be published because
they contain intellectual property which may not be dis-
closed.



In addition to this, the abstraction techniques foster
model integration and consolidation, a prerequisite for
building high-level architectural system models.

The techniques complement analysis tools and can be
utilized to varying degrees, depending on the intended
level of abstraction being suitable for the modeling context:
Porting, reengineering, evolutionary development, etc.

Further research is neccessary to integrate the methodol-
ogy with model based aproaches.
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