SOFTWARE—PRACTICE AND EXPERIENCE, VOL. 10, 935-942 (1980)

Modified Petri Nets as Flowcharts for Recursive
Programs

SIEGFRIED WENDT

Department of Electrical Engineering, University of Kaiserslautern,
P.O.B. 3049, 6750 Kaiserslautern, West Germany

SUMMARY

The problem of graphic representation of recursive program structures is discussed. On the
basis of the stack mechanism, modified Petri nets are introduced which only slightly differ
from the common state machine flowcharts, but have much more representation power.

KEY WORDS Flowchart Petri net Recursion Stack

INTRODUCTION

There are many people designing software who get more insight into program structure
by looking at a flowchart instead of reading a program source. The common flowchart
techniques, however, do not allow us to represent recursive program structures. This is
quite obvious, since these flowcharts are only special versions of finite state machine
graphs and therefore are restricted to the representation of regular sequences. The
representation power of flowcharts can be much incréased by introducing potentially
infinite storage for the flowchart tokens. Since the usual generators for recursively
defined sequences use a stack, it is reasonable to look for a way to introduce the stack
mechanism into the flowchart. A rather simple solution has been found which will now
be described. Since this solution is based on Petri nets, the description is preceded by a
short introduction to the definition of such nets.

PETRI NETS

A Petri net is a directed graph with two types of nodes, an initial marking of nodes of
one type and a firing rule to change the marking.! The nodes of the markable type are
called places, the others are called transitions. Only nodes of different types can be
connected by directed arcs. In graphic representations, places are drawn as circles and
transitions as rectangles. Figure 1 shows an example of a net with 6 places and 6
transitions. The marking is the assignment of a non-negative integer to each place; the
places can be viewed as containers for tokens, and the marking as the actual contents.

The firing rule determines how a new marking can be derived from a given marking.
The rule consists of two parts: the first part defines a necessary condition which enables
a transition to fire, and the second part defines how the firing of a transition changes the
marking. A transition is enabled to fire if each input place contains at least one token; an
input place of a transition is a place which is connected to the transition by an arc

0038-0644/80/1110-0935%$01.00 Received 9 February 1979
© 1980 by John Wiley & Sons, Ltd. Revised 7 May 1980

935

936 SIEGFRIED WENDT

Figure 1. Example of a Petri net

pointing to the transition. The firing of a transition changes the marking as follows:
Each input place loses one token and each output place gains one token; the marking of a
place which is both input and output place stays unchanged.

A net is said to contain a conflict if an enabled transition can be disabled by the firing
of another transition. F igure 1 shows such a conflict: the given marking enables the
transitions C, D and F, and the firing of F will disable C and D.

GENERAL DESCRIPTION OF THE METHOD

The change of the program counter’s value during the execution of a sequential
program corresponds to the flow of a single token along selected paths of the lowchart.
Each call of a routine not only shifts this so-called processor token from the calling
program to the called routine, but also generates a so-called stack token which is put on
a stack place—labelled S—within the calling program in order to store the return
position (see Figure 2). Since the called routine can call another routine and so on,

Main Subroutine Subroutine
Program of level1 of level 2

Salr

{ \.
L9

Figure 2. Nesting of subroutines

MODIFIED PETRI NETS 937

many stack tokens can be waiting on different stack places before the first return occurs.
If there is no recursion, each of the different stack places contains at most one token, but
in case of recursion, it is possible that there are stack places with more than one token on
each. At each return the processor token is placed on the so-called return place—
labelled R—from which there are paths to all return positions. If there are stack tokens
waiting on different stack places, the conflict of where the processor token should go has
to be resolved. This is done by introducing the ‘age’ as an attribute of the stack tokens.
The age of a stack token says how long this token has already been waiting on its place.
Now the conflict can be resolved such that whenever the processor token is on the
return place, the transition with the ‘youngest’ stack token will fire.

Inzthe literature on net theory, nets with rules to solve conflicts are called priority
nets.

EXAMPLES

The first example is the standard example for recursive programs: the computation of
the factorial n! of a non-negative integer 7. Figure 3 shows two versions of the program
in an ALGOL- or PASCAL-like notation. In the right-hand version, the data stack is
explicitly declared. The semantics of the two stack operations are as follows:

POP(TV): The top element is removed from the stack and its value is stored into

the variable V., _

PUSH(V): An element with the value of the variable ¥ is placed on top of the

stack; v is not changed.

In the left-hand version of Figure 3, the stack mechanism is hidden. In ‘order to
understand this program, one must know that each call of the procedure causes a new
memory allocation for the local variables which implies a push for the old values of these
variables. The corresponding pop occurs implicitly at each return from the procedure.

In a graphic representation of a procedure call the stack operations for the data
variables must be shown explicitly because in a graph the call can only be a simple
‘Jump to subroutine’. Such a jump means a transfer of control and a saving of the return
address, nothing else. Therefore, the flowchart in Figure 4 corresponds to the right-
hand version of Figure 3. :

A stack place which is drawn as a double circle has a potentially infinite capacity for
tokens. : :

The second example deals with the generation of graphics code and its execution.
The graphics code is a program, i.e. a sequence of graphics instructions, and needs a
display processor for execution. The graphics instructions are classified into four
categories:

1. Instructions which can be interpreted by a hardware display device; for example

‘Draw vector Ax, Ay’ or ‘Write alphanumeric symbol A’;

2. Instructions for the modification of the graphics program counter; for example
‘Fump to location L’ or ‘Fump to graphics subroutine S’;

3. Instructions which must be expanded by a macro expander; for example ‘Draw a
ctrele xg, ¥o, ¥’ which must be expanded into a sequence of vector instructions as a
piecewise approximation of the circle;

4. Stop instruction.

An expansion generated by the macro expander may itself contain other, lower level

macros which again have to be expanded. Each expansion has the form of an individual
graphics program including a stop instruction.

938 SIEGFRIED WENDT

GLOBAL VARIABLES
Js M, N;
STACK;
PROGRAM MAIN PROGRAM MAIN
LOCAL VARIABLES
"N
BEGIN BEGIN
WRITE('N="); WRITE('N=");
READ(N) ; READ(N);
PUSH{(N) ;
CALL FAC(N); CALL FAC;
POP(N);
WRITE('N!=', N); WRITEC'N!=', N);
END; END;
PROCEDURE FAC(J); PROCEDURE FAC:
LOCAL VARIABLES
M
BEGIN BEGIN
POP(J);
IF J>0 THEN IF J>0 THEN
BEGIN BEGIN
Mi=J-1; Mi=g-1;
PUSH(J) ;
PUSH(M) ;
CALL FAC(M); CALL FAC;
POP(M);
pPoP(J);
Ji=d*M Ji=URM;
END END
ELSE J:=1; ELSE J:=1;
PUSH(J);
END; ' END;

Figure 3. Example for direct recursion: computation of the faculty of an integer

Generation and execution of graphics program code is done by the program system
which is shown in Figure 5 in an ALGOL- or PASCAL-like notation. The main
program provides the original graphics program and has it executed by the virtual
display processor. The virtual display processor fetches and decodes the graphics
instructions. Instructions of categories 1 and 2 are called simple instructions and can be
‘executed’ by the virtual display processor itself, either by transferring them to the
peripheral hardware Wisplay device or by modifying the graphics program counter’s
value. Macro instructions are transferred to the macro expander which returns the
expanded code to the virtual display processor for execution. Figure 6 shows the
corresponding flowchart.

Main Program

MODIFIED PETRI NETS

Subroutine for Computation of J

¢

PUSH (N}

L
1

POP (NY)

:

_J 1s0 ; WA w0<J
—
PUSH [J:=1) PUSH)
PUSH(M:=J-1)
-
—
POP (M=({J-1)1}
POP (J)

PUSH (J:=Jx{J-1)1)

\—

N

Figure 4. Flowchart to Figure 3

939

940 SIEGFRIED WENDT

GLOBAL VARIABLES
GRAPHPROG [1. .MAX];
GRAPHPC, NEXTFREE, GRAPHINSTR:
STACK;

PROGRAM MAIN

BEGIN
GENERATE OR READ GRAPHICS CODE
INTO GRAPHPROG [1, . ENDOFPROG];
GRAPHPC:=1;
NEXTFREE : "ENDOFPROG+1 ;
CALL VIRTDISPLPROC;

END;

PROCEDURE VIRTDISPLPROC;
BEGIN
FETCH: GRAPHINSTR:=GRAPHPROG [GRAPHPC];
GRAPHPC : =GRAPHPC+1;
IF GRAPHINSTR IN SET OF
SIMPLEINSTR THEN
BEGIN
EXECUTE GRAPHINSTR;
GOTO FETCH;
END; '
IF GRAPHINSTR IN SET OF
MACROINSTR THEN
BEGIN
PUSH(GRAPHPC) ;
CALL MACROEXPANDER;
POP (GRAPHPC);
GOTO FETCH;
END;
END;

PROCEDURE MACROEXPANDER;
BEGIN
EXPAND GRAPHINSTR
INTO GRAPHPROG [NEXTFREE. .ENDOFEXP];
PUSH (NEXTFREE);
GRAPHPC : =NEXTFREE ;
NEXTFREE: =ENDOFEXP+1;
CALL VIRTDISPLPROC;
POP (NEXTFREE);
END;

Figure 5. Example for indirect recursion: interpretation of a display program

941

MODIFIED PETRI NETS

G 24n3L] 07 1UDYINOL "9 d4nSi]

ﬁl)

)i

Jepupdx3 o400

J0SS3d04g ADJdSig |DNJJIIA

r
{9d9) dod
"Y1SNI (0d49) HSNd
31023X3 _||||I_
[(33541X3N} dod |
- "H1SNI H
© “YLSNI OHIVH "MLSNI —
373WIS ¥ d401s
1+03d9=:0d9)
1+ dX3400N3 + a
"WISNI HOL34 1+ 904dJ0AN3
=:33441X3N =:3344LX3N
‘33¥41X3IN=:0d9 fi=:0d0
{3344LX3N) HSNd fapo3
£J}SUI0JODY soydnug
pundx3y N— 3}DJaudg
— _

woJiboigd uloy

942 SIEGFRIED WENDT

REFERENCES

A. Petri, Kommunikation mit Automaten, Schriften des IIM, No. 2, Bonn, 1962.

1. C.
2. M. Hack, Decidability Questions Jor Petri Nets, PhD thesis, Department of Electrical Engineering,
MIT, 1975.

