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Abstract

The architectural level plays a major role in the engi-
neering of computer based systems. Having proper means
for representing the architecture of a system is a crucial ele-
ment of large system development efforts as it reduces the
amount of uncertainty among the involved stakeholders. 

This paper presents a systematic approach called FMC
(Fundamental Modeling Concepts) to describe the concep-
tual architecture of software-intensive systems. FMC is a
decision-making and planning tool, facilitating the commu-
nication between the architect and further stakeholders. We
will give a brief overview of FMC and how it can be applied
throughout the development life cycle. Finally, we will give
some examples of where FMC has been successfully applied
in the industry.

1. Introduction

The engineering of large computer based systems (CBS)
requires the collaborative effort of many people from a vari-
ety of engineering disciplines. Only if all participants share
a similar understanding of the overall concepts, can the sys-
tem be developed in an efficient and successful manner.
This is the driving motivation of this paper. The results are
based on the work of Wendt [1],[2],[3] and his research
group [4],[5],[6],[7],[8], who have been tackling this prob-
lem for more than 25 years in applied research projects with
Siemens, SAP AG and other industry partners.

There is a general consensus on the importance of the
architectural level of systems development [9]. As pointed
out by [10], it is an architectural challenge to reconcile the
integration needs of software and hardware to produce an
integrated system. Finally, it is the system and not the soft-
ware inside which customers wish to acquire.

For this reason, research in the field of architecture is an
important and rapidly growing discipline as it offers prom-
ise for more effective systems development [10],[11]. Cur-
rent activities cover a wide variety of studies beginning with
the role of architecture in industry [12], through architec-
tural analyses [13] up to architecture description languages,
aiming at a high-level automated assembly of systems [14].
Nevertheless, research regarding the conceptual system
architecture remains very limited (e.g. [15],[16]). In this
paper we will focus mainly on the conceptual aspects of sys-
tem architecting in order to support the system architect
throughout the project.

The representation of a system’s architecture plays an
important role throughout the whole development life cycle
[11]. In the early stages, architecture descriptions serve as a
major decision-making tool, providing a necessary level of
abstraction which aides in dealing with the complexities
associated with large CBS. Thus, they allow the studying of
alternative solution strategies and the reasoning about their
feasibility at a point in the development process when little
is known about the final realization of a system. After the
planning stage, architecture representations guide the
implementation, documentation, deployment and evolution
of a system. For this reason, we will present an approach of
how architectural representations can be used throughout
the entire life cycle.

Architecture descriptions are means of facilitating com-
munication among the various stakeholders in systems
development. Especially in the case of CBS, architecture
descriptions are important in supporting a holistic overall
system planning, aiming at an integrated software-hardware
codesign. Thus, one of the goals of our approach is to reduce
the gap between the software and the hardware develop-
ment.

Despite the need for effective exchange of knowledge at
the architectural level, this kind of communication remains
a major problem in most development projects. An ongoing
field-study of multiple industry projects indicates [17] that
the communication and documentation of architectural con-
cepts is handled very poorly in the daily life of most archi-
tects. This begins with an uncertain understanding of the
different architectural categories and ends with an unaware-
ness of appropriate architectural representation techniques.



For this reason, we will discuss these deficiencies in this
paper and propose a solution approach: Firstly, we will clar-
ify the role of the architect and his communication needs.
Secondly, we will provide a semantic metamodel identify-
ing different architectural categories. Finally, we will
present a set of concepts, called FMC (Fundamental Model-
ing Concepts), to describe the conceptual architecture struc-
tures of a system along with its application throughout the
development life cycle. We will conclude with an outline of
some FMC case studies and the lessons learned.

2. The architect’s role

In the context of a large CBS development project, the
architect1 plays a central role by having the technical lead of
the project. The architect is responsible for defining the
overall concepts and thus the architectural structures of the
system (Figure 1).

For this reason, the architect has to function as a media-
tor between the customer side and the developers (engi-
neers). The architect acts to translate between the problem
domain concepts of the client and the solution domain con-
cepts of the developers [10]. The architect conceives the
architecture and describes his vision about the various sys-
tem structures with architecture models from different per-
spectives. The process of architecting is based on the
collected requirements, the experience of the architect and
several domain specific heuristics2 the architects applies.

The foremost role of the created architectural models is
to communicate by providing an evocative picture of the
system in development. At the architectural level, the archi-
tect discusses the system concepts with the customer3 at an
early stage thereby ensuring that the system to be built
reflects the customer’s value judgements of his objectives
and constraints. 

Therefore, the architect has to explain how the system
will operate from the customer’s point of view, providing
the client with confidence in the progress of design and con-
struction. In the same manner, the architect discusses the
current state of the planning with his developers, explaining
the overall architecture and evaluating its technical feasibil-
ity from the developers’ perspective. In this way, architec-
tural models become the documentation of decisions
(system rationale) and help to provide the overall design
integrity. Models that connect the customer and the develop-
ers are particularly helpful in bridging the gap between the

1. The role of the architect represents either a single person or
a small team. Such a team is usually small sized to ensure
architectural integrity.

2. [10] provides an extensive list of heuristics being applied
during architecting.

3. Here, the customer role includes users, operators, etc.
developers’ technical capabilities and the client’s objec-
tives.

The task of project reporting on development progress,
development costs, resource needs and upcoming problems
to the upper management can be supported by architectural
models showing the overall system structures. Those mod-
els have to be decorated to show the needed facts properly.

When moving from architecture to design, the architect
has to define the work breakdown structure based on the
architecture defined so far. Then, the developers go into
detailed design of the system parts they are assigned to. The
design decisions in this stage are constrained by the archi-
tecture defined earlier. The design discussion takes place
among the developers, involving the architect whenever
there is an upcoming mismatch with the imposed architec-
ture. This kind of communication involves models on a
lower level of abstraction, providing greater details than the
high-level architectural models provided by the architect.

Communication at the level of detailed software design
works sufficiently well while developing CBS. For this level
of abstraction, the Unified Modeling Language (UML) [18]
has become a widely accepted de facto standard in research
and industry.

This statement holds for the hardware domain as well
where hardware design is a well understood process using
methods such as VHDL etc. [19].

On higher levels of abstraction, communication concern-
ing the overall architecture of a CBS remains difficult and
uncertain [20]. The commonly used object-oriented
approach for the software part reflects conceptual problems
on this level of abstraction [21].
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Figure 1: The architect acts as communicator
(compositional structure - see section 4)
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3. Architectural Categories

The term architecture is a very vague one in the context
of computer based systems. Even though there is a huge
variety of definitions [22], there exist a few major character-
istics on which most people agree: 

3.1 Architecture definitions

The ECBS Architecture Working Group [11] outlines the
term system architecture as “a system’s fundamental,
abstract structure which determines its behavior defined in
terms of components, connectors and constraints.”

This definition describes the CCC metaphor of system
architecture, where:

• Components are the major elements of the architec-
ture (functional, physical or logical).

• Connections are the relationships between those com-
ponents.

• Constraints impose restrictions on the components
and their connections.

The IEEE Standard 1471 defines the term architecture in
a similar way: “(System architecture is) the fundamental
organization of a system embodied in its components, their
relationships to each other, and to the environment, and the
principles guiding its design and evolution.” [9]

These definitions - among others - indicate that architec-
ture is always related to the composition of parts to a larger
whole. This implies the idea that architecture deals with
structural aspects though the character of those structures is
not further specified.
3.2 A conceptual metamodel

A precise definition of the fundamental semantic catego-
ries at the architectural level of CBS remains an open issue.
The conceptual metamodel shown in Figure 2 proposes a set
of fundamental semantic categories which have to be differ-
entiated during the discussion of the term system architec-
ture for CBS.

Primarily, it is important to distinguish between the enti-
ties existing in the “real world” (the philosophical object
domain – the world of things) and the architectural relevant
abstractions of those entities. These abstractions form the
architectural level (the philosophical subject domain) com-
prising different purely abstract structures.

The “real world” (object domain)

The perceptible “real world” entities of a CBS can be
partitioned into three distinct categories:

1. Program code: All program artefacts contributing to
the behavior of the system during execution can be
subsumed in this category. This means that this cate-
gory includes the complete source code (e.g. C-files)
and any of its transformations (e.g. all the executables
compiled from the sources)

The program code category represents the program-
ming artefacts, which will finally contribute to the sys-
tem behavior.

2. Physical Components: Any physical device of the
CBS belongs to this category. This category is parti-
tioned into three distinct subcategories:
Figure 2: Semantic categories in the context of the term system architecture (E/R diagram - see section 4)
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• Information processing hardware embodies compo-
nents which in fact execute the program code (e.g. a
CPU).

• Non informational elements represent the compo-
nents of a system that are not related to information
processing (e.g. an oil pump).

• Actors and sensors of the system represent the inter-
face between the informational components and the
environment. On the information processing side,
they exchange control information (data) with the
information processing hardware. On the non infor-
mational side, the sensors collect information about
physical quantities whereas the actors control phys-
ical components (e.g. a contactor controlling the
energy supply of an oil pump).

3. Execution: This category represents the desired sys-
tem itself which only exists when the program code is
executed by the information processing hardware dur-
ing system runtime. The system can be observed by
measuring the different physical quantities changing
over time during system operation. Thus, the execu-
tion category delineates the relation between program
code and the system’s hardware.

The architectural level (subject domain)

Having identified the three fundamental categories in the
“real world” domain, it is straight forward to identify three
corresponding categories at the architectural level. The
architectural level differentiates from the “real world” as it
deals with abstractions of the real entities. Reducing the
complexity embodied in the “real world” is the intention of
this abstraction. The categories related to physical phenom-
ena (physical component and execution) have an infinite set
of properties. The program code category of any large sys-
tem has a practically infinite set of properties as it is almost
impossible for the human mind to be aware of the complete
source structures (imagine keeping an overview of more
than 1 MLOC for a large system).
1. Software related structures: This category comprises
any structure that can be conceived when abstracting
from the program code alone. This includes structures
such as module/package hierarchies, class hierar-
chies, call graphs, directory structures and many more
which are related to the structural aspects of the pro-
gram code.

2. Hardware related structures: These structures are
obtained by abstraction from the concrete physical
devices being part of the system. These are, for exam-
ple, electronic hardware architecture structures,
plumbing structures, wiring layouts, floor plans and
many more.

3. Conceptual system structures: The missing link
between the two other architectural categories is the
abstraction of the system itself. This category repre-
sents the system when it is performing its operations.
It represents the structures needed to understand the
system at runtime. For this reason, hardware aspects
and program code aspects are conceptually related to
each other. This category encompasses component
structures and behavioral structures which are tightly
coupled. As an example, one can imagine the distribu-
tion of operating system processes onto hardware
along with their communication protocols.

Besides the abstraction from the “real world” (the
executing system), there must exist a mapping
between the other two architectural categories (soft-
ware and hardware) and the conceptual category in
order to trace the conceptual elements to their realiza-
tion. Conceptual system structures are covered by the
FMC approach being discussed in the subsequent sec-
tions.

3.3 Views and models

It is common practice to describe the architecture of a
system from different viewpoints where the application of a
Figure 3: Relationship between FMC and IEEE 1471 views and models



viewpoint to a concrete system results in an architectural
view [9]. Views address one or more aspects of a system
(e.g. the security view), usually relating structures from dif-
ferent categories with each other (e.g. [23],[15]).

Views are represented by one or multiple architectural
models where each model may be part of multiple views. In
most cases the models are represented using graphical nota-
tions. Nevertheless, there are models expressed only by
mathematical expressions (e.g. some performance models).

It is important that the different system models are care-
fully coupled with each other. Otherwise, the various mod-
els can not be aligned to create an unambiguous picture of
the whole system.

The FMC approach provides three distinct model types
representing the different conceptual system structures at
the architectural level. They are well aligned and tightly
coupled to describe the conceptual system structures of
informational systems. Figure 3 shows how FMC fits into
the IEEE 1471 conceptual model of architectural descrip-
tion [9].

4. The FMC concepts

The conceptual system structures play a key role in
attaining a common overall understanding of a system. It
explains how the requirements from the application domain
are transferred onto the technical structure of the system
[24]. Particularly in the context of CBS, the conceptual sys-
tem structures relate the software structures with the hard-
ware structures.

Thus, it enables the stakeholders to discuss various sys-
tem aspects such as compliance with nonfunctional require-
ments, general concepts and the interaction of the system’s
components, without getting lost in implementation-spe-
cific details.

It is worthwhile to use comprehensive means for this
kind of communication, i.e. to provide a coherent set of con-
cepts whose sole purpose is to express the knowledge
related to the conceptual system architecture. This repre-
sents the guiding idea behind the FMC approach [25],[26].

FMC is based on [1],[2],[3] and has been further refined
in [4],[5],[8]. Even though the notational aspects are not the
primary concern of FMC, the concepts of FMC correspond
with a semiformal graphical notation. While relying on
bipartite graphs, it is optimized for the knowledge exchange
between the various architecture stakeholders.

It is not mandatory to use this notation when applying the
FMC concept to describe the conceptual structures of a sys-
tem. Thus, it is possible to use most concepts of FMC with
other means of representation (e.g. by using stereotyped
UML diagrams). Despite this possibility we do not encour-
age this step, because by using the same notation (e.g.
UML) to describe software structures and conceptual struc-
ture, one runs the risk of blurring the distinction between the
different semantic categories [15].

4.1 The FMC structure types

One of the primary problems encountered when dealing
with descriptions of large systems is their embodied com-
plexity. One strategy of FMC for reducing complexity is to
clearly distinguish between the following types of struc-
tures:1

• Compositional structures

• Dynamic structures (behavior)

• Value structures (data)

A FMC system view is the representation of a system
aspect on a certain level of abstraction. If we restrict our
interest to structures appearing at a certain point in time, two
types of structures have to be distinguished - compositional
structures and value structures. On the other hand, we can
observe system behavior over time.

Compositional structures

Any system can be seen as a composition of collaborat-
ing components called agents [28]. Each agent serves a
well-defined purpose and communicates via channels (and
shared storages) with other agents. If an agent needs to keep
information over time, it has access to at least one storage
where information can be stored. Channels and storages are
(virtual) locations where information can be observed. 

With the FMC notation, agents are drawn as rectangular
nodes, whereas locations are symbolized as rounded
nodes2. In particular, channels are depicted as small circles
and storages are illustrated as larger circles or rounded
nodes (see left of Figure 4). The possibility to read or write
information at a location is indicated by arrows.

The distinction between active agents and passive loca-
tions (channels and storages) is a key element of FMC as it
is a major mechanism of FMC to reduce complexity: The
value structures existing at the various locations are
described separately with value structure models. This leads
to the second model type describing the system’s behavior
expressed by the read and write accesses of the agents at the
various locations defined in the compositional structure
model.

Dynamic structures

The main purpose of FMC dynamic structure models is
to describe the flow of control through the system.

1. See [25] for a more detailed description of the FMC structure
types and the guiding ideas behind FMC.

2. This notation originates from [29]
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Each agent has a well defined functionality represented
by the operations the agent can perform. An operation is
defined by the values an agent reads from connected loca-
tions and the resulting value it writes to a certain location.
Operations can be triggered by events and in turn produce
events. This leads to causal dependencies of events.

FMC separates the system’s control states from the sys-
tem’s data states.1 This leads to a great reduction of the
states that have to be described explicitly (only the control
states). The differentiation between active and passive com-
ponents in the compositional structure models enables this
classification in an intuitive manner. At a point in time dur-
ing operation, the system’s data state is embodied in the
locations of the compositional structure, while the control
state of the system is hidden within the agents. Thus, the
control states are described explicitly with the associated
dynamic structure model.

The FMC notation uses Petri nets [33] to represent
dynamic structure models (e.g. right of Figure 4). Transi-
tions symbolize operational behavior (event types, opera-
tion types or complex activities) whereas places symbolize
the control states. The text label of each transition node
briefly describes the semantics of the corresponding activ-
ity.

Each transition belongs to an agent of an associated com-
positional structure. To show the responsibilities of each
agent, it is possible to partition the set of transitions and
place them in distinct areas (swim-lanes). These areas are
separated by dashed lines, symbolizing the domains of the
corresponding agents (see Figure 4).

1. The usefulness of this separation has already been known by
Turing [30]. Throughout the 60s and 70s, it was intensively
used by hardware developers [31] and programming lan-
guage developers [32]. From the late 80s on, this separation
of states has been known as extended finfite state machines
(EFSM).
Control states are symbolized by places, whereas data
states are handled differently to reduce complexity: Activity
descriptions identify data state changes occurring at the cor-
responding storages of the compositional structure. In addi-
tion, branch conditions are expressed as data state
predicates placed at edges leading to conflicting transitions2

(see Figure 4, Request Handler: below “initialize”).

Concurrency can be described for two cases: either mul-
tiple agents working sequentially or a single agent showing
concurrent behavior.

Dynamic Compositional Structures: Complex systems
frequently show a compositional structure which changes
over time. These changes are usually caused by activities of
certain system agents. For example, a dispatcher agent in a
server system creates and removes agents which are respon-
sible for incoming requests (see Figure 4). FMC facilitates
the modeling of such systems by allowing a part of the com-
positional structure to appear as a (structured) value of a
storage. By changing the “value” of such a storage, an agent
can alter the system‘s compositional structure. With the
FMC notation, such storages are symbolized using a dashed
border. Thus, dynamic compositional structures are the out-
come of special types of operations creating and destroying
agents. 

Value structures

Each location of the compositional structure has the abil-
ity to hold a value (data). A value can be a simple, unstruc-
tured value such as an integer as well as a structured value
such as a tree or the whole content of a database. 

The FMC notation offers a dedicated diagram type for
the description of value structure types. It is based on
entity/relationship diagrams [34]. The primary symbols are

2. An extended firing rule has to be applied where transitions
are only ready for firing when both the correct control state
and the correct data state is given.
Figure 4: FMC compositional structure model (left) with associated dynamic structure model (right)



rounded nodes for entity sets and rectangular nodes for rela-
tions. Entity nodes and relation nodes are connected by
undirected edges along with cardinalities (see Figure 5).

FMC conceptual metamodel

All elements of the presented FMC structures and their
interdependencies are well defined by the FMC metamodel
[25]. Furthermore, there exists a concept of ports [35] aim-
ing at a stronger tool support for FMC.

4.2 Model hierarchies

Each FMC view is a set of FMC models concerning one
level of abstraction. Such a view describes the conceptual
system structures of a system from a certain viewpoint using
the three FMC model types. The compositional structure
model connects all FMC models at the same abstraction
level. This is due to the fact that value structures describe the
data content of locations and dynamic structures describe
the way agents interact via channels and storages.

With CBS, it is usually essential to provide system mod-
els on different levels of abstraction. In this case, multiple
views are given which are hierarchically ordered by a refine-
ment relationship. Refinement implies that high-level
model elements are substituted by lower-level elements.
Such refinement decisions can affect all three FMC model
structures and systematically increase the level of detail or
show certain implementation decisions. An example of
refinement is shown in Figure 4, where the web server agent
is refined by the structure shown inside. On a higher level of
abstraction one would not show this internal structure thus
leading towards a less detailed behavior description.

5. Applying FMC

FMC models can be applied throughout the life cycle of
a project, serving as the integral planning part for a CBS.

Figure 5: FMC value structure model
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We suggest that architects use FMC to describe and dis-
cuss their conceptual ideas when planning the architectural
level of a CBS prior to concurrent engineering of the parts
of a system. 

This means, e.g. that conceptual system models are pre-
pared in order to decide which components should be
implemented using hardware and which ones using soft-
ware. Furthermore, FMC models can help to determine the
technologies best suited to realize the planned concepts.
Based on a risk analysis of the suggested models it is possi-
ble to determine which parts of a system have to be evalu-
ated with prototypes before accepting a certain solution
strategy.

It is important to map the collected requirements to the
elements of the architectural models as early as possible.
This mapping allows the tracing of requirements to archi-
tectural and design elements. It is usually helpful to prepare
a “business view” which describes only those components
that are relevant to a specific application scenario. Those
models usually allow an easy mapping of use cases onto the
conceptual architecture. Thus, they can be applied to repre-
sent the customer’s view of the system. Furthermore, they
are useful to explain the planned solution and its implica-
tions on cost and timing issues to the client.

Moreover, it is important to describe the technical core as
well (e.g. middleware services). Those models either pro-
vide a detailed description of certain concepts or they give a
global overview of all components participating in the sys-
tem. Such models (particularly the composition structure
models) can easily facilitate certain project management
tasks:

The architect can define the work breakdown structure
based on the architecture description rather than on feature
lists as it is commonly the case in the industry. After assign-
ing personnel for the realization of the architectural compo-
nents, the project manager can keep track of the
development progress by attributing those elements with a
task completion status. Such a “project status map” helps to
efficiently communicate the project status and upcoming
difficulties or delays to the upper management and the cus-
tomer. Based on this information, the concerned stakehold-
ers can agree on a solution strategy (e.g. to omit a certain
component in the current release or to choose a different
technology).

When the architecture documentation is well aligned
with the current status of the development, it can be used as
a reference for newcomers and during maintenance and evo-
lution. For this purpose, it has been identified that it is useful
to review the architecture documentation at the end of a
release cycle in order to keep it up to date.



6. FMC case studies

The FMC approach has been applied to facilitate the
analysis and synthesis of various systems:

A recent FMC case study took place during the develop-
ment of a vending machine for refilling prepaid accounts of
mobile phones. We were involved in the middle of the archi-
tecture definition phase of the project. Until then, the usual
“Power-Point box-and-line diagrams” had been used to rep-
resent the system’s architecture. After a short FMC training
(1 day), the team was able to adopt the FMC approach.
Some developers had general difficulties in describing the
system at a higher level of abstraction as they had to omit
many details in their models. Nevertheless, the consequent
use of FMC (especially the compositional structure models)
soon indicated that the previous models were extremely
ambiguous and the intentions were not well understood.
This led towards extensive discussions based on the FMC
models in order to establish a well-suited conceptual archi-
tecture. It was said by the head of development that “FMC
helped a lot to facilitate communication and increase team
integration” [36].

As another example, FMC has been applied successfully
in the evolutionary development of a large CBS in the tele-
communications sector [25],[37]. The entire system was
developed by more than 300 engineers (hardware and soft-
ware) over the last 10 years (>2.5M LOC in the current
release). The FMC case study took place in a subproject of
about 20 developers at two different locations who were
developing new functionality. The architects used FMC
models and sequence diagrams to describe the conceptual
architecture which was well accepted by the developers
after a short while. The precise description of the conceptual
architecture has been very beneficial for project planning,
communication between the two remote sites and finally
providing a useful frame for the detailed design. Thus, FMC
is currently applied to further development projects by the
same group.

FMC has been used as well to recover the conceptual
architecture of systems:

One example is a very large-scale business application -
the SAP System R/3 ®. The architecture of the system core
(about 5M LOC) has been analyzed to get an overview of
the system and to illuminate many single concepts. As a
result of the analysis a set of architectural description man-
uals [38] have been written which serve as conceptual refer-
ence for developers and SAP training courses. 

Another example is the architecture recovery of a
medium scale open-source application, the Apache HTTP
web server [39],[26]. The conceptual architecture models
serve now as reference models in FMC training courses and
furthermore to study architectural patterns in student
courses.

7. Lessons learned

Having conducted several case studies in the industry,
the FMC approach has shown that it is well suited to cover
the description of the conceptional system structures of even
large and complex systems. With the focus on the commu-
nication needs of the architect with other stakeholders, FMC
addresses a major problem in the daily life of many system
architects, especially in the context of CBS.

Scalability

We have applied FMC in the analysis of existing systems
and as well as the synthesis of new systems. These studies
clearly show the scalability of FMC in describing the archi-
tectural concerns of medium to large applications. In the
case of very small projects, the usefulness of any architec-
tural description technique is questionable. This is due to
the fact that there are usually not many people involved,
reducing the need for communication drastically. Thus, one
should consider the application of agile methods (e.g.
Extreme Programming [40]) in those cases.

Development process

Currently, there are no well suited process models avail-
able, neither supporting the use of FMC for development
nor for architecture analysis. 

Based on our experiences we suggest that an architecture
driven development process should consider an explicit
architecture phase, dealing with conceptual issues. This
helps to define robust and stable architectures before apply-
ing detailed design. During this stage, FMC is able to pro-
vide high-level abstractions to describe software systems in
order to get a common understanding between the project
members. The FMC compositional structure diagrams can
be seen as mental maps which assist in getting a quick over-
view of a system’s structure. Thus, the compositional struc-
ture models can be used to guide activities throughout the
development process (e.g. to trace requirements to architec-
tural components or to define the work breakdown struc-
ture). 

Notational aspects

A clear distinction between the notations used for
describing conceptual architecture and low-level design is
beneficial to the development of a system. Our experiences
show that this approach has worked well when using FMC
to represent the conceptual architecture and UML for the
object-oriented design. In some cases it has been difficult to
identify which level of detail should be covered by the archi-
tecture description and when to move towards design.



The use of bipartite graphs is fundamental for the FMC
notation. The simplicity of the notational elements has the
advantage of being easy to draw and to distinguish on a
white-board or on paper. This is important since no com-
puter-based tool such as a diagram editor is usually used
between software developers during architecture sessions.

Nevertheless, the simplicity of the FMC notation means
that only little effort is required in learning to read and draw
the diagrams. This is possible because the terminology of
the conceptual basis is restricted to a few coherent concepts. 

FMC is not bound to an implementation paradigm which
enables conceptual modeling for any kind of system. With a
semantic extension of the compositional structure diagrams,
it is even possible to describe material flows besides the
purely informational intention of FMC. When moving
toward implementation-specific design, an appropriate
notation has to be selected (e.g. UML).

Model consistency

The problem of keeping architecture and design models
in a synchronous state with the “real world” artefacts is
often mentioned. Our experiences show that the low level
design models of the software and the hardware categories
should reflect the current state of the development. Those
models serve the purpose of detailed communication among
the developers or engineers. If they are not aligned with the
sources or the hardware implementation, they do not fulfill
their purpose. This is in contrast to conceptual models on
higher levels of abstraction. Once those models are in place,
they usually do not change drastically over time. Experience
shows that the integrity and consistency of architecture
models can be sufficiently ensured by an appropriate devel-
opment process [37]. Nevertheless, a well suited tool sup-
port would help to keep the architectural models up to date.

8. Concluding remarks

We have discussed the shortcomings of the state of the
praxis regarding the architectural description of CBS. Thus,
we have presented an approach to describe the conceptual
system structures at the architectural level.

As a first step, we have defined three different architec-
tural categories in the context of CBS (software structures,
hardware structure and conceptual structures). Next, we
have described the communication needs of a system archi-
tect concerning the conceptual system structures.

This led us to the FMC approach which facilitates the
architectural description of conceptual system structures.
FMC focuses on the support of the architect in his commu-
nication with other stakeholders concerning conceptual
issues. The conceptual basis of FMC provides several
mechanisms to reduce complexity when describing a sys-
tem’s architecture (hierarchical decomposition, separation
of component structure from behavior and data, distinguish-
ing active and passive components and isolating the control
states from the data states).

Even though it is possible to use the FMC concepts with
any appropriate notation (like UML), we encourage the use
of the dedicated FMC-notation. The strict use of bipartite
graphs and the clear graphical distinction of the conceptual
system structures from the other architectural structures has
proven to be beneficial in practice.

Finally, FMC has been successfully applied to facilitate
the architecture recovery and development of medium-sized
to large CBS where it has proven its scalability and useful-
ness. Nevertheless, there are still some open issues concern-
ing the application of FMC:

• Current development processes do not address the
conceptual architecture of CBS properly, thus ham-
pering the successful application of FMC. Therefore,
we are currently developing an architecture driven
process (ADP) tailored for the use with FMC.

• The current tool support for FMC is still relatively
weak (i.e. a drawing tool based on Visio® stencils).
Particularly, an integration of FMC with existing tools
(e.g. project and risk management) and a repository
based storage system would be desirable.

• It may be useful to attribute and analyze FMC models
for estimating certain quality attributes of a planned
system architecture.
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