
Value

Read
Access

per-
forms

Agent
structured

consist
of

Write
Access

Operation

Value Range
Structure

Channel

Connection

2
2

Fundamental Modeling Concepts

www.fmc-modeling.org

Andreas Knöpfel

FMC Quick Introduction

© FMC Consortium
June 2007

FMC

3

Quick Introduction to FMC

What is FMC?
Intention
and background

FMC is the acronym for “Fundamental Modeling Concepts”, primarily a consistent and
coherent way to think and talk about dynamic systems. It enables people to communi-
cate the concepts and structures of complex informational systems in an efficient way
among the different types of stakeholders. A universal notation originating from existing
standards, easy to learn and to apply, is defined to visualize the structures and to com-
municate in a coherent way. In contrast to most of the visualization and modeling stand-
ards of today it focuses on human comprehension of complex systems on all levels of
abstraction by clearly separating conceptual structures from implementation structures.
FMC is based on strong theoretical foundations, has successfully been applied to real-life
systems in practice (at SAP, Siemens, Alcatel etc.) and also is being taught in software
engineering courses at the Hasso Plattner Institute for Software Systems Engineering.

Purpose
of this document

This quick introduction will give you an idea of what FMC is all about by presenting
you the key concepts starting with a small but smart example. Following the example,
you will learn about FMC’s theoretical background, the notation and hopefully get a feel-
ing about the way FMC helps to communicate about complex systems. At first glance
you might find the example even trivial, but keep in mind that this little example pre-
sented here may be the top-level view of a system realized by a network of hundreds of
humans and computers running a software built from millions of lines of code. It would
hardly be possible to efficiently develop such a system without efficient ways to commu-
nicate about it.

Level of abstractionThe example describes different aspects of a travel agency system. Starting with a top
level description of the system, we will shift our focus towards implementation, while
still remaining independent from any concrete software structures. Hence, do not expect
to see UML class diagrams, which doubtlessly might be helpful to represent the low-lev-
el structures of software systems.

Compositional structures and block diagrams
Introducing
the example

Figure 1 shows a block diagram representing a model of the static compositional struc-
ture of a travel agency system and its environment. In the upper part of the block dia-
gram several rectangles are shown, each containing the stylised figure of a human. The
left group are customers of the travel agency interacting with the reservation system.
Reservation orders can be placed, which are transmitted to the corresponding travel
organizations, while the customers are issued their tickets. To the right are those persons
looking for travel information using the information help desk. This information is pro-
vided by the different travel organizations and is stored in a location symbolized by the
big rounded rectangle labeled “travel information”.

Informational
systems

This block diagram, like any block diagram, represents a real or at least imaginable
real informational system. The system described is no more abstract than anything else
we consider to be real. Looking at the system we see components, artifacts of our mind,
which relate to tangible distinguishable physical phenomena. This view applies to our
perception of technical devices and living beings as well as of any composite structure.
Thus, an informational system can be seen as a composition of interacting components
called agents. Each agent serves a well-defined purpose and communicates via channels
and shared storages with other agents. If an agent needs to keep information over time it

4 Quick Introduction to FMC

has access to at least one storage where information can be observed. If the purpose is not
to store but to transmit information the agents are connected via channels.

Figure 1: Block diagram - Travel agency system

Notation of
block diagrams

Agents are drawn as rectangular nodes, whereas locations are symbolized as rounded
nodes. In particular, channels are depicted as small circles and storages are illustrated as
larger circles or rounded nodes. Directed arcs symbolize whether an agent can read or
write information from or to a storage.

In the example, the arcs directed from the nodes labeled “travel organization” to the
storage node labeled “travel information” symbolize that the travel organizations write the
travel information. Correspondingly the arc directed from the storage node labeled “travel
information” to the agent node labeled “information help desk” symbolizes that the help
desk reads the travel information. If an agent can modify the contents of a storage regard-
ing its previous contents, it is connected via a pair of opposed bound arcs, called modifying
arcs. The access of the reservation system and the travel organization to the customer data
storage is an example.

If communication is possible in both directions, the arcs connecting the agents via a
channel may be undirected. Looking at the example, communication between the help
desk and people interested in some information is visualized that way. A very special but
common variant of this case is a request/response channel where a client requests a service
from another agent and after a while gets its response. To express which side is requesting
the service a small arrow, labeled “R” for request and pointing from client to server, is

Travel organizationTravel organization

Reser-
vations

Customer
data

Travel
information

Travel agency

Reservation
system

Information
help desk

R place order,
get ticket

R

Customers

advertising,
consulting

Interested people

Quick Introduction to FMC 5

placed beside the node symbolizing the channel. Examples are the channels between the
customers and the reservation system.

Dynamic structures and Petri nets
BehaviourInformational systems are dynamic systems. By looking for some time at the channels and

locations that are used to store, change, and transmit information their behaviour can be
observed. Extended Petri nets are used to visualize the behaviour of a system on a certain
level of abstraction corresponding to a block diagram.

Figure 2: Petri net - Buying a ticket

ExampleFigure 2 shows a Petri net describing the causal structure of what can be observed on the
channel between the travel agency and one of its customers in our example. Buying a ticket
starts with the customer ordering a ticket. Then the travel agency checks the availability
and in case this step is successful, a ticket may be issued to the customer concurrently with
a request of payment. The customer is expected to issue the payment and when both sides
have acknowledged the receipt of the money or the ticket, respectively, the transaction is
finished.

acknowledge
receipt

acknowledge
receipt

issue
payment

issue
ticket

request
payment

handle
problem

success

else

check
availabilty

order ticket

Customer Travel agency

6 Quick Introduction to FMC

Petri nets Petri nets describe the causal relationship between the operations performed by the dif-
ferent agents in the system. Each rectangle is called a transition and represents a certain
type of operation. The transitions are connected via directed arcs with circular nodes called
places. Places can be empty or marked, which is symbolized by a black dot (token). The
behaviour of the system can now be simulated by applying the following rule to the Petri
net: Whenever there is a transition with all its input places marked and all its output places
unmarked this transition may fire, meaning the operation associated with the transition is
performed. Afterwards all input places of the transition are empty and all its output places
are marked.

Looking at the Petri net shown in Figure 2, in the beginning only the transition labeled
“order ticket” may fire. This means the first operation in the scenario described will be the
customer ordering a ticket. Because only the initial marking of a Petri net may be shown in
a printed document, it is necessary to process the net by virtually applying the firing rules
step by step until you get an understanding of the behaviour of the system. This is very
easy as long as there is only one token running through the net.

Conflicts Common patterns are sequences of actions, loops, and conflicts. A conflict is given if
multiple transitions are enabled which are connected to at least one common input place.
Because the marking of that input place cannot be divided, only one of the transitions may
fire. In many cases a rule is given to solve the conflict. In those cases predicates labeling the
different arcs will help to decide which transition will fire. For example, different actions
have to be taken depending on the outcome of the availability check. If the check was suc-
cessful the travel agency will issue the ticket and request payment.

Concurrency In our example issuing the ticket and payment should be allowed to happen concurrent-
ly. Using Petri nets it is possible to express concurrency by entering a state where multiple
transitions may fire concurrently. In the example we introduce concurrency by firing the
unlabeled transition, which has two output places. Afterwards both transitions, the one
labeled “issue ticket” and the one labeled “request payment”, are allowed to fire in any
order or even concurrently. The reverse step is synchronization, where one transition has
multiple input places that all need to be marked before it is enabled.

Using refinement it is possible to describe single transitions or parts of the Petri net in
more detail. Furthermore, by refining the compositional structure of the system or by intro-
ducing a new aspect additional Petri nets may become necessary to describe the interaction
of the new components.

Value range structures and entity relationship diagrams
Looking at dynamic systems we can observe values at different locations, which change
over time. In our model, agents are responsible for those changes which have read and
write access to these locations forming a commonly static structure, which is shown in a
block diagram. Petri nets give us a visual description of the agent’s dynamic behaviour. To
describe the structure and repertoire of information being passed along channels and
placed in storages entity relationship diagrams are used.

Figure 3 shows an entity relationship diagram representing the structure of the informa-
tion, which is found when looking at the storage labeled “reservations” and “customer
data” which both the “reservation system” and the “travel organizations” can access (see
Figure 1). In the middle of the diagram we see a rounded node labeled “reservations” rep-
resenting the set of all reservations stored in the system. Such a reservation is defined by a
customer booking a certain tour, allocating a certain seat in a certain vehicle. The tour will
follow a certain route starting at some location and ending at some other location. Looking
at the passengers first time customers are distinguished from regular customers. Inde-
pendently, passengers can also be partitioned into business and private travellers. The sys-
tem also stores which organization has arranged which reservation and which travel
organization realizes which tour.

Quick Introduction to FMC 7

Figure 3: Entity relationship diagram - Tour reservations

Visualizing entities
and their relations

Using entity relationship diagrams round nodes visualize different sets of entities, each
being of a certain type. The sets in the example are passengers, business people, tours,
vehicles etc. Each of them is defined by a set of attributes according to its type. Most ele-
ments of a sets have one or more relations to elements of another or also the same set of ele-
ments. For instance, each route has one location to start at and one location to end at. Each
relationship, i.e. each set of relations between two sets of entities of a certain type, is repre-
sented by a rectangular node connected to the nodes representing the sets of entities par-
ticipating in the relationship. Thus, there is one rectangle representing the “starts at”
relationship and another representing the “ends at” relationship. Annotations besides the
rectangle can be used to specify the predicate, an expression using natural language which
defines the relationship.

CardinalityThe cardinality of a relationship expresses the number of relations of a certain type one
entity may participate in. Arrows or small numbers, respectively, attributing the relation-
ship nodes represent the cardinality. A simple arrow symbolizes the direction of a func-
tional relationship. Each element of the set the arrow emanates from is associated to one
element of the related set. Looking at our example the arrow pointing from “seats” to
“vehicles” expresses that every seat belongs to exactly one vehicle. A bi-directional arrow
symbolizes a one-to-one assignment of entities.

PartitionsIf one entity node contains multiple sub-nodes it represents the union of the entity sets
enclosed. Typically the elements of the union share a common type, an abstraction charac-
terizing the elements of all subsets. For instance, in the example “first-time customers” and
“regular customers” define the set of “passengers”. But we can also distinguish “business

Business
organi-
zation

Reser-
vation

Tour Vehicle

Route Location

starts at

ends at

follows

Seat

belongs to

Travel
organi-
zation

Travel
agency

realizes

arranges

Passenger First-time
customer

Regular
customer

Business
customer

Private
customer

8 Quick Introduction to FMC

customers” from “private customers”, which are the result of another true partitioning of
“passengers”. To avoid visual confusion caused by multiple containment nodes crossing
each other these unrelated partitions are symbolized using a longish triangle.

Reification Sometimes it is helpful to interpret the elements of a relationship as entities themselves
which may participate in further relations. Such abstract entities may have no direct phys-
ical counterpart. They are the reification of some concrete fact, a statement about the rela-
tion among some given entities. A typical example is the relationship labeled “reservation”
between the sets of “passengers”, “tours”, and “seats”. Each element of that relationship
embodies an entity itself - a reservation arranged by some travel agency or travel organiza-
tion.

Mind maps Entity relationship diagrams may not only be used to visualize the structure of the infor-
mation stored in technical systems. They can also help to gain some understanding of new
application domains by providing an overview of the relations between its concepts.

Levels of abstraction
Purpose vs means So far, the system has been described on a very abstract level only reflecting its purpose.

The implementation of most components is still undefined. We see a high-level structure
that also could be explained with a few words. Looking at the block diagram (Figure 1) we
only learn that the customers and interested people are expected to be humans. Nothing is
said about how the reservation system, the help desk, or the travel organization are imple-
mented, what the stored information looks like, whether it will be an office with friendly
employees answering questions and distributing printed booklets or an IT system accessi-
ble through the Internet. All that is undefined on the present level of abstraction.

Value of
high-level models

Nevertheless, the model shows a very concrete structure of the example system. The sys-
tem structure has been made visual, which highly improves communication efficiency.
There is some meaningful structure you can point to, while talking about it and discussing
alternatives. This would be inherently impossible if the real system does not exist yet or the
system just looks like a set of technical low-level devices that could serve any purpose.

Hierarchy of models By refining the high-level structure of the system, while considering additional require-
ments, a hierarchy of models showing the system on lower levels of abstraction is created.
Again, the system description can be partitioned according to the three fundamental
aspects that define every dynamic system - compositional structure, behaviour, and value
structures. By making the relationship between the different models visible (using visual
containment and descriptive text) comprehension of the systems is maintained over all lev-
els of abstraction. With this approach it is possible to prevent the fatal multiplication of
fuzziness in communicating about complex structures without anything to hold on to.

Example Figure 4 shows a possible implementation of the information help desk and the storage
holding the travel information. The storage turns out to be implemented as a collection of
database, mail, and web servers used by the different travel organizations to publish their
documents containing the travel information. The information help desk contains a set of
adapters used to acquire the information from the different data sources. The core compo-
nent of the help desk is the document builder. It provides the documents assembled from
the collected information and from a set of predefined templates to a web server. People
interested in travel agency services can read the documents from this web server using a
web browser. It is not obvious that the reservation system now has to request travel infor-
mation from the information help desk instead of getting it itself. This is an example for
non-strict refinement.

We could continue to describe the dynamics and value structures on that level, after-
wards refining or introducing new aspects one more time and so on. We will not do this
here. When to stop this iteration cycle depends on the purpose of your activities: Maybe
you are you going to create a high-level understanding of the system’s purpose, maybe
you are discussing design alternatives of the systems architecture, or estimating costs, or
what have you.

Quick Introduction to FMC 9

Figure 4: Block diagram - Implementation of the information help desk

Travel agency
Information

help desk

Travel
information

Travel organizationTravel organization

Reser-
vations

Customer
data

Customers

advertis ing,
consulting

Interested people

Database
management

system
IMAP
Server

HTTP
Server

XML
documents

docu-
ments

docu-
ments RR

Adapter

R

Adapter Adapter

R RSQL IMAP4 HTTP

Publish / subscribe channel

Document builder

Document
cache

Templates

HTTP Server

R

Reservation
system

R

R place order,
get ticket

HTTP
Browser

R

HTTP
Browser

R

10 Quick Introduction to FMC

Value of abstraction levels
Knowing the system's structure presented in Figure 1 it is quite easy to understand the
more complex lower-level structure presented now. To ease comprehension components
from a higher-level system view should be projected into the lower-level system view
whenever possible. In case implementation is done by simple refinement the result will be
a containment hierarchy between the nodes representing components of different levels of
abstraction. Without doubt it would be much harder to understand the example system
had it been introduced on the level of adapters, mail servers, and browsers. It would have
been nearly impossible to create a common understanding without any illustrations at all.

What is special about FMC?
FMC focuses on human comprehension of informational systems. The key is the strict sep-
aration of a very few fundamental concepts which can always be distinguished when com-
municating about informational system. Generally one should distinguish between

• didactic system models serving the communication among humans (focus of FMC)
and analytical models serving the methodologically derivation of consequences,
• system structure and structure of system description (e g, program structure), and
• purpose and implementation.

Essential about FMC is to differentiate between
• compositional, dynamic, and value range structure,
• active and passive components, and
• control state and operational state.

FMC provides the concepts to create and visualize didactic models enabling people to
share a common understanding of a system’s structure and its purpose. Therefore FMC
helps to reduce cost and risk in the handling of complex systems.

